K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2022

Ta có :

8732 = (874)8\(\overline{....1}^8=\overline{....1}\) có chữ số tận cùng là 1

23 tháng 8 2022

8732 = (874)8 =( \(\overline{....1}\))8 = \(\overline{....1}\)

26 tháng 3 2016

5^1992=(5^4)^498=625^498=0625^498=(.....0625)

vậy bốn chữ số tận cùng của 5^1992 là 0625

21 tháng 2 2017

ta có:5^8=390625

số có tận cùng là 0625 thì nâng lên bất cứ số nào cũng có tận cùng là 0625

ok 

5 tháng 6 2017

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

23 tháng 1 2017

2100=(220)5=(...76)5=(...76)

7^1991=7^1991.7^3=(74)^497.343=(...01)^497.343=(....01).343=....43

5^1992=(5^4)^498=625^498=0625^498=(...0625)

23 tháng 1 2017

Chu so tan cung cua so 2^100 la 4, chu so tan cung cua 7^1991 la 7

Mk làm bằng  mẹo đó nha!

23 tháng 10 2017

cái này minh chỉ giải dc câu 1 thôi nhé. 
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 ->  bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.

9 tháng 8 2018

a)(...4)

b)(...4)

c)(...6)

tích đúng cho mình nha

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)