\(abcd=\left(a+b+c+d\right)^3\)(kí hiệu :  abcd là số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Đặt \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=k\)\(\left(k>0\right)\)\(\Rightarrow\)\(a=Ak;b=Bk;c=Ck;d=Dk\)

\(\Rightarrow\)\(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=A\sqrt{k}+B\sqrt{k}+C\sqrt{k}+D\sqrt{k}\)

\(=\sqrt{k}\left(A+B+C+D\right)\)

\(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{\left(Ak+Bk+Ck+Dk\right)\left(A+B+C+D\right)}\)

\(=\sqrt{k}\left(A+B+C+D\right)\)

=> đpcm 

26 tháng 9 2016

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

30 tháng 7 2016

Đặt \(x=1-a\)\(y=1-b\)\(z=1-c\)

Ta có :  \(1+a=\left(1-b\right)+\left(1-c\right)=y+z\) 

\(1+b=\left(1-a\right)+\left(1-c\right)=x+z\)

\(1+c=\left(1-a\right)+\left(1-b\right)=x+y\)

Áp dụng bđt Cauchy, ta có : \(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy Min A = 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 4 2021

\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).

Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+c^2\ge2ac\).

\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).

\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)

\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).

\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).

\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)

\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .

Chứng minh tương tự, ta được:

\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\) 

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)

Chứng minh tương tự, ta dược:

\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).

\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).

\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).

Mà \(ab+bc+ca=3abc\)(theo đề bài).

Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).

\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).

\(\Leftrightarrow K\ge\frac{3}{2}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).

Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).

21 tháng 3 2020

x=38 ; a=1; b=4

21 tháng 3 2020

x = 38 còn a = 1 và b = 4

1 tháng 6 2016

a) \(x+y+z+5=2\sqrt{x-1}+4\sqrt{y-3}+6\sqrt{z-5}\left(DK:x\ge1;y\ge3;z\ge5\right)\)

\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-3\right)-4\sqrt{y-3}+4\right]+\left[\left(z-5\right)-6\sqrt{z-5}+9\right]=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-3}-2\right)^2=0\\\left(\sqrt{z-5}-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=7\\z=14\end{cases}}}\)(TMDK)

7 tháng 11 2017

Áp dụng Holder:

\(24VT=\left(1+1+1+1+1+1\right)\left(a^3+a^3+c^3+c^3+b^3+b^3\right)\left(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{a^3}+\frac{1}{c^3}\right)\ge\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^3\)

Mà \(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge36\)( AM-GM)

\(24VT\ge36\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\Leftrightarrow VT\ge VF\)

Dấu = xảy ra khi a=b=c . 

P/s: BĐT holder: \(\left(a_1^n+a^n_2+...a_3^n\right)\left(b_1^n+b_2^n+...b_n^n\right)...\left(z_1^n+z_2^n+...z_n^n\right)\ge\left(a_1.b_1..z_1+a_2.b_2..z_2+...+a_n.b_n.z_n\right)^n\)

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

6 tháng 3 2018

P/s làm nhé :) 

d là số nguyên tố nên d = { 2 ; 3 ; 5 ; 7 }

abcd là số chính phương mà số chính phương ko bao h tận cùng là 2 ; 3 ; 7 suy ra d = 5

abc5 chia hết cho 9 và 5 và là số chính phương nên ta có thể viết abc5 = 9.5.5a^2

Suy ra abc5 = ( 3.5.a )^2 = 15a^2

Tới đây cậu tự xét các trường hợp nhé :)