Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow c^2=ab+ac+bc+c^2\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow ab=-c\left(a+b\right)\)
\(\Leftrightarrow\frac{ab}{a+b}=-c\)
\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05 c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105 vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05
c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
Ai mướn mày trả lời hả Đức
Hình như hết người lớp 9 bây giờ rồi bạn ơi ! Bạn đợi thầy cô Quản lý vào làm cho !
`abcd- `cd=`ab <=>1000a+100b+ 10c+d-10c-d=10a+b <=> 1000a+100b-10a-b=0 <=> 990a+99b=0 <=> 99(10a+b)=0
=> 10a+b=0 <=> b=-10a
mình chỉ biết làm đến đây thôi @@ thiếu dữ kiện quá
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
abcd x 10^4 + 1998 chia hết cho 1997
=> 15 x abcd + 1 chia hết cho 1997
=> 1995abcd + 133 chia hết cho 1997
=> 2abcd - 133 chia het cho 1997
=> 1996abcd - 133 x 998 chia hết cho 1997
=> abcd + 932 chia hết cho 1997
=> abcd thuộc { 1065 ; 3062 ; 5059 ; 7056; 9053 }
cảm ơn bn
bn có face ko