Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ABC ( A>0 , A,B,C<10 )
Theo đề bài , ta có : ABC=11.(A+B+C)
A.100+B.10+C.1=11.A+11.B+11.C
A.89=B+C.10
Ta thấy B+C.10\(\le\)99 => A.89 \(\le\)99
=> A=1 vì nếu A bằng 2 thì 2.89 = 178 vậy A chỉ bằng 1 . Khi A=1 ta có :
B+C.10=89
Ta thấy C chỉ bằng 8 nếu C bằng 7 thì B sẽ là số có 2 chữ số . Vậy C=8
Khi C=8 ta có :
B+8.10=89
B+80=89
B=9
=> Ta có số 198
a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow c^2=ab+ac+bc+c^2\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow ab=-c\left(a+b\right)\)
\(\Leftrightarrow\frac{ab}{a+b}=-c\)
\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)
số abcd chia hết cho 11 khi a+c-b-d chia hết cho 11
hay a-b+c-d=11
theo đề ta cũng có a+b+c+d chia hết cho 11
=>a+b+c+d=11 hoặc 22 hoăc 33
nếu a+b+c+d=11 thì a+c=11 và b+d=0
=>có 8 số
nếu a+b+c+d=22 thì a+c=16.5 và b+d=5,5 (loại)
nếu a+b+c+d=33 thì a+c=22 và b+d=11(loại)
vậy có 8 số thỏa mãn
Bài hay vậy!
Từ các giả thiết về số chẵn suy ra \(b,d,f,h\) là các chữ số chẵn còn \(a,c,e,g,i\)là các chữ số lẻ.
Do \(\overline{abcde}\) chia hết cho 5 nên \(e=5\).
Từ các giả thiết về chia hết cho 3, 6, 9 suy ra \(\overline{abc},\overline{def},\overline{ghi}\) đều chia hết cho 3.
Nhận xét: Do \(\overline{cd}\) chia hết cho 4 mà \(c\) lẻ nên (bằng kiểm tra) suy ra \(d=2\) hoặc \(d=6.\)
Trường hợp 1: \(d=2\). Khi đó \(\overline{def}=\overline{25f}\) chia hết cho 3 nên \(f=8\).
\(\overline{fgh}=\overline{8gh}\) chia hết cho 8 nên \(\overline{gh}=16\). Nhưng khi đó \(\overline{ghi}=\overline{16i}\) chia hết cho 3 thì vô lí.
Trường hợp 2: \(d=6\). Khi đó \(\overline{def}=\overline{65f}\) chia hết cho 3 nên \(f=4\).
\(\overline{fgh}=\overline{4gh}\) chia hết cho 8 nên \(\overline{gh}=32\) hoặc \(\overline{gh}=72\).
Nếu \(\overline{gh}=32\) thì do \(\overline{ghi}\) chia hết cho 3 suy ra vô lí.
Do đó \(\overline{gh}=72\) nên \(\overline{ghi}=729\).
Ta đã có \(\overline{abcdefghi}=\overline{abc654729}\). Còn lại các chữ số \(1,3,8\).
Lưu ý \(b\) chẵn.
Nếu \(\overline{abc}=183\) thì \(1836547\) không chia hết cho 7 (vô lí).
Còn \(\overline{abc}=381\) thì \(3816547\) chia hết cho 7.
Đáp số là \(381654729\)
Gọi số phải tìm là abcd = n²
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên:
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N)
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣)
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n.
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd
Ta có:
m = k.n ≤ 99
32 ≤ n
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3
Như vậy: k = 2 hoặc 3
+Nếu k = 2 thì: dcba = 4.abcd (♥)
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦)
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên.
2 số cần tìm :
9801 = 99^2
và 1089 = 33^2