Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Đặt \(A=\overline{5a43b}\)
A chia hết cho 2 và 5 nên A có tận cùng là 0
=>b=0
=>\(A=\overline{5a430}\)
A chia hết cho 9
=>5+a+4+3+0 chia hết cho 9
=>a+12 chia hết cho 9
=>a=6
=>Số cần tìm là 56430
c: Đặt \(B=\overline{735a2b}\)
B chia hết cho 5 và không chia hết cho 2 nên b=5
=>\(B=\overline{735a25}\)
B chia hết cho 9
=>7+3+5+a+2+5 chia hết cho 9
=>a+22 chia hết cho 9
=>a=5
Vậy: Số cần tìm là 735525
d: Đặt \(C=\overline{5a27b}\)
C chia hết cho 2 và 5 nên C có tận cùng là 0
=>b=0
=>\(C=\overline{5a270}\)
C chia hết cho 9
=>5+a+2+7+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
Vậy: Số cần tìm là 54270
e: Đặt \(D=\overline{7a142b}\)
Vì D chia hết cho cả 2 và 5 nên D có tận cùng là 0
=>b=0
=>\(D=\overline{7a1420}\)
D chia hết cho 9
=>7+a+1+4+2+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
=>Số cần tìm là 741420
g: \(X=\overline{40ab}\)
X chia hết cho 2 và 5 nên b=0
=>\(X=\overline{40a0}\)
X chia hết cho 3
=>4+a+0+0 chia hết cho 3
=>a+4 chia hết cho 3
=>\(a\in\left\{2;5;8\right\}\)
a) Số chia hết cho 2 và 5 thì chữ số tận cùng là 0
Số chia hết cho 3 khi tổng các chữ số chia hết cho 3
mà 4 + 0 = 4
Vậy a = 5 ; b = 0
b) Không chia hết cho 2 mà chia hết cho 5 khi chữ số tận cùng là 5
Số chia hết cho 9 khi tổng các chữ số chia hết cho 9
mà 7 + 3 + 5 + 2 + 5 = 22
Vậy a = 5 ; b = 5
a) a = 2, b = 0.
b) a = 6, b = 0.
c) a = 5, b = 5.
d) a = 4, b = 0.
e) a = 1, b = 0.
f ) a = 2, b = 0.
g) a = 2, b = 0.
h) a = 2,5,8 , b = 0.
Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.
a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2.
- Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.
b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9.
- Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.
Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.
c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8.
- Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.
Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.
a) Để số A chia hết cho 2,5 thì b = 0
Tổng các chữ số của số A là :
6 +1 + 4 = 11
Vậy a = 7 để A chia hết cho 2,3,5,9
Thử lại : 67140 chia hết cho 2,5
6 + 7 + 1 + 4 = 18
Mà 18 chia hết cho 3,9 nên số A bằng 67140 là đúng
Giải thích các bước giải:
A= 6a14b
Để A chia hết cho cả 2 và 5 ⇒ D tận cùng là 0
⇒ A= 6a140
Để A chia hết cho cả 3 và 9
⇒ Tổng các chữ số của A chia hết cho 9
hay 6+a+1 + 4 +0 =11 + a chia hết cho 9
=> a = 7
Vậy A = 67140
Để B = 25a1b chia hết cho 15
⇒ B chia hết cho 5 và cho 3
Vì B chia hết cho 5 nhưng k chia hếo 2 nênB tận cùng bằng chữ số 5
Hay B = 25a15
Để B chia hết cho 3 thì 2 + 5 + a + 1 + 5 = 13+a chia hết cho 3
⇒ a ∈ {2;5;8}
Vậy B có thể là 25215; 25515; 25815
a)Để 4a12b chia hết cho 2 và 5 thì b=0
Ta được số 4a120
Để 4a120 chia hết cho 9 thì (4+a+1+2+0) chia hết cho 9
=>(7+a) chia hết cho 9
=> a=9
Ta được số 42120
Vậy số cần tìm là 42120
Bài 1:
a, Số 4827, 6915 là các số chia hết cho 3 nhưng không chia hết cho 9
Vì tổng các chữ số của những số này đều là 21, 21 chia hết cho 3 nhưng không chia hết cho 9. Nên hai số này cũng chia hết cho 3 mà không chia hết cho 9
b, Số chia hết cho cả 2;3;5;9 là số mà tận cùng của nó bằng 0, tổng các chữ số cấu thành nên cho chia hết cho 9. Như vậy không có số nào thoả mãn.
Bài 8:
Để 4a12b chia hết cho 2;3;5;9 thì b phải là số 0 (điều kiện chia hết cho cả 2 và 5)
Ta xét thấy: 4+1+2+b= 4+1+2+0=7
Để 4a12b chia hết cho 3 và 9 thì (7+a) chia hết cho 9 (với b là số tự nhiên có 1 chữ số)
Vậy a=2; b=0
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
Ví dụ :
B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}
Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.