K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

20 tháng 10 2018

c) \(16^5+2^{15}⋮33\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}.\left(1+2^5\right)\)

\(=2^{15}.33⋮33\)

11 tháng 10 2015

abc chia hết cho 7 

=> 100a+10b+c chia hết cho 7 

=> 98a+2a+7b+3b+c chia hết cho 7 

=> (98a+7b)+( 2a+3b+c) chia hết cho 7 

=> 7.(14a+b) + ( 2a+3b+c) chia hết cho 7 

=> 2a+3b+c chia hết cho 7 ( vì 7.(14a+b) chia hết cho 7)

=> dpcm

 

27 tháng 7 2015

a. 15ab chia hét cho 2 & 5 => b=0

15a0 chia hết cho 3 => 1+5+0+a chia hết cho 3

                            hay 6+a chia hết cho 3

=> a \(\in\left\{0;3;6;9\right\}\)

b. ab+ba chia hết cho 33

=> ab+ba chia hết cho 11 & 3 (11.3=33)

=> 10a+b+10b+a chia hết cho 11 và 3

=> 11a+11b chia hết cho 11 và 3

=> 11(a+b) chia hết cho 3 (đã chia hết cho 11)

=> a+b chia hết cho 3

=> a+b là các số có tổng chia hết cho 3 (vd: a=1,b=2 có tổng là 3; a=2,b=4 có tổng là 6 chia hết cho 3;...)

1 tháng 11 2015

thui tui di bệnh viện đây

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

21 tháng 12 2017

a) Chứng minh rằng: ab(a + b) chia hết cho 2 ( a;b εN)

TH1: a là số lẻ, b lẻ thì tổng a +b chẵn ==> ab(a + b) chia hết cho 2

TH2: a chẵn, b chẵn thì đương nhiên ab(a + b) chia hết cho 2  ( vì có 1 thừa số là số chẵn chia hết cho 2)

TH3: a chẵn, b lẻ hoặc a lẻ, b chẵn thì đương nhiên ab(a + b) cũng chia hết cho 2 ( vì có 1 thừa số là số chẵn chia hết cho 2)

b) Chứng minh rằng ab ba chia hế cho 11.

 ab + ba  = 10a + b + 10b + a = 11a + 11b = 11(a+b) chia hết cho 11

c) Chứng minh aaa luôn chia hết cho 37.

aaa = a. 111 = a.37.3 chia hết cho 37

21 tháng 12 2017

thanks