\(\frac{1}{x}+\frac{1}{y}=\frac{1}{24}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

*x=312 và y=26

*x=216 và y=27

*x=168 và y=28

*x=120 và y=30

*x=96 và y=32

*x=88 và y=33

*x=72 và y=36

*x=60 và y=40

*x=56 và y=42

*x=72 và y=48

*x=42 và y=56

*x=40 và y=60

*x=36 và y=72

*x=33 và y=88

*x=32 và y=96

*x=30 và y=120

*x=28 và y=168

*x=27 và y=216

*x=26 và y=312

*x=600 và y=25

*x=25 và y=60

18 tháng 5 2016

tách 1/24=?+? 

rút gọn ra đc mẫu =1 là xong

bài này dài nên làm làm j hại não ra

18 tháng 5 2016

*x=312 và y=26

*x=216 và y=27

*x=168 và y=28

*x=120 và y=30

*x=96 và y=32

*x=88 và y=33

*x=72 và y=36

*x=60 và y=40

*x=56 và y=42

*x=48 và y=48

*x=42 và y=56

*x=40 và y=60

*x=36 và y=72

*x=33 và y=88

*x=32 và y=96

*x=30 và y=120

*x=28 và y=168

*x=27 và y=216

*x=26 và y=312

*x=600 và y=25

*x=25 và y=600

15 tháng 5 2018

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Leftrightarrow xy\ge4\)

\(\Rightarrow A=xy+2017\ge4+2017=2021\)

25 tháng 2 2021

Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)

giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)

+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)

+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)

Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)

=> \(b\in\left\{1;2;3\right\}\)

+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)

+ Với  b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)

+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.

22 tháng 2 2020

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

12 tháng 5 2017

A=4 

tk đi mình gửi kq cho

12 tháng 5 2017

Ta có:

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Rightarrow A=xy\ge4\) 

Dấu = xảy ra khi x = y = 2