Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tách 1/24=?+?
rút gọn ra đc mẫu =1 là xong
bài này dài nên làm làm j hại não ra
*x=312 và y=26
*x=216 và y=27
*x=168 và y=28
*x=120 và y=30
*x=96 và y=32
*x=88 và y=33
*x=72 và y=36
*x=60 và y=40
*x=56 và y=42
*x=48 và y=48
*x=42 và y=56
*x=40 và y=60
*x=36 và y=72
*x=33 và y=88
*x=32 và y=96
*x=30 và y=120
*x=28 và y=168
*x=27 và y=216
*x=26 và y=312
*x=600 và y=25
*x=25 và y=600
\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)
\(\Leftrightarrow xy\ge4\)
\(\Rightarrow A=xy+2017\ge4+2017=2021\)
Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)
giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)
+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)
+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)
Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)
=> \(b\in\left\{1;2;3\right\}\)
+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)
+ Với b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)
+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.
\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)
\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)
Áp dụng bđt cauchy cho 3 số dương:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Ta có:
\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)
\(\Rightarrow A=xy\ge4\)
Dấu = xảy ra khi x = y = 2
x va y = 48
*x=312 và y=26
*x=216 và y=27
*x=168 và y=28
*x=120 và y=30
*x=96 và y=32
*x=88 và y=33
*x=72 và y=36
*x=60 và y=40
*x=56 và y=42
*x=72 và y=48
*x=42 và y=56
*x=40 và y=60
*x=36 và y=72
*x=33 và y=88
*x=32 và y=96
*x=30 và y=120
*x=28 và y=168
*x=27 và y=216
*x=26 và y=312
*x=600 và y=25
*x=25 và y=60