\(x^6-x^4+2x^3+2x^2=y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

x6 - x4 + 2x3 + 2x2 = y2 (1)

<=> x4(x - 1)(x + 1) + 2x2(x + 1) = y2

<=> x2(x3 - x2 + 2)(x + 1) = y2

<=> x2(x + 1)[x3 + 1 - x2 + 1] = y2

<=> x2(x + 1)(x + 1)(x2 - x + 1 - x + 1) = y2

<=> x2(x + 1)2(x2 - 2x + 2) = y2 

Do x;y thuộc N và y2 là số chính phương; x2(x + 1)2 là số chính phương

=> x2 - 2x+  2 = k2 (k thuộc  N)

<=> k2 - (x - 1)2 = 1

<=> (k - x + 1)(k + x - 1) = 1

Lập bảng:

k - x + 1 1
k + x - 1 1
 k 1
 x

 1

Với x = 1 thay vào pt (1) => y2 = 16 - 14 + 2.13 + 2.12 = 4 => y = 2

24 tháng 1 2019

ko có gt

24 tháng 1 2019

LÀM J có gt bn 

7 tháng 4 2019

very hard

22 tháng 7 2020

ta có \(y^3-x^3=2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\Rightarrow y>x\)

\(\left(x+2\right)^3-y^3=4x^2+9x+6=\left(2x+\frac{9}{4}\right)^2+\frac{15}{16}>0\Rightarrow y< x+2\)

Vậy x<y<x+2 mà x,y thuộc Z => y=x+1

thay y=x+1 vào phương trình ta được:

\(x^3+2x^2+3x+2=\left(x+1\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

với x=1 thì y=x+1=2

với x=-1 thì y=x+1=0

Vậy phương trình đã cho có 2 nghiệm (x;y)=(1;2);(-1;0)

22 tháng 7 2020

Bài này không có điều kiện x, y nhưng ít nhất là x, y là số nguyên nhé!

+) Ta thấy x = 0 không có y nguyên thỏa mãn

+)\(\left(x+1\right)^3=x^3+3x^2+3x+1\ge x^3+2x^2+3x+2>x^3\)

Mà \(x^3+2x^2+3x+2\)là lập phương của số tự nhiên nên ta có: \(x^3+2x^2+3x+2=x^3+3x^2+3x+1\)

Từ đây tìm được x=1, y=2

26 tháng 7 2019

Có:

\(2x^2+1=y^2-yx^2\)

<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)

=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau

=> \(x^2⋮\left(y+1\right)\)

Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)

Ta có phương trình : \(t\left(y+2\right)=y-1\)

,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí

+) Với y khác -2

Chia ca hai vế cho y+2 ta có:

\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)

Tìm y để t thuộc Z

Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}

+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)

+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)

+) y+2=1  => y=-1 => t=-2 => x^2= 0  => x=0 

+) y+2 =3 => y=1 => t=0 => x^2 =0  => x=0

THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn

Vậy ...

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)