K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2023

 Nếu \(x< -3\) thì \(x^2+x+3< x^2\) và \(x^2+x+3>\left(x+1\right)^2\), vô lý.

 Nếu \(x>2\) thì \(x^2+x+3>x^2\) và \(x^2+x+3< \left(x+1\right)^2\), cũng vô lý.

 Do đó \(x\in\left\{-3;-2;-1;0;1;2\right\}\)

 Thử từng giá trị, ta thấy \(\left(x;y\right)\in\left\{\left(-3;3\right);\left(-3;-3\right)\right\}\) là các cặp số thỏa ycbt.

10 tháng 11 2016

Áp dụng bđt AM-GM ta có \(\left(x^2+1\right)\left(x^2+y^2\right)\ge2x.2xy=4x^2y..\)
\(\Rightarrow VT\ge VP\)
Dấu = xảy ra khi \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}\Rightarrow}\left(x,y\right)\in\left\{\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\right\}\)

20 tháng 8 2015

Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)

Do vậy mà \(x=2,0,4,-2\).  Tương ứng ta có \(y=6,-2,6,-2\)

Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)