Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)
\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)
mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)
\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b) Tương tự câu a, ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
c. Tương tự, ta có:
\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...
b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...
c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...
Bài này dễ mà!
Có: \(xy+2x=27-3y\)
\(x\left(y+2\right)=33-3\left(y+2\right)\)
\(x\left(y+2\right)+3\left(y+2\right)=33\)
\(\left(x+3\right)\left(y+2\right)=33\)
Đến phần này chắc bạn tự làm đc rồi nhỉ
Ta có: \(\left|x-2007\right|\ge0\forall x\)\(\Rightarrow2\left|x-2007\right|\ge0\forall x\)
\(\Rightarrow2\left|x-2007\right|+3\ge3\forall x\Rightarrow VT\ge3\forall x\left(1\right)\)
Lại có: \(\left|y-2008\right|\ge0\forall y\)\(\Rightarrow\left|y-2008\right|+2\ge2\forall y\)
\(\Rightarrow\frac{1}{\left|y-2008\right|+2}\le2\forall y\)
\(\Rightarrow\frac{6}{\left|y-2008\right|+2}\le\frac{6}{2}=3\forall y\Rightarrow VP\le3\forall y\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có: \(VT\ge3\ge VP\) xảy ra khi và chỉ khi
\(VT=VP=3\)\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2007\\y=2008\end{cases}}\)
Ta có : xy - 4x - 3y = 5
=> xy - 4x - 3y + 12 = 5 + 12
=> x(y - 4) - 3(y - 4) = 17
=> (x - 3)(y - 4) = 17
Vì x;y \(\inℤ\Rightarrow x-3;y-4\inℤ\)
Khi đó ta có 17 = 1.17 = (-1).(-17)
Lập bảng xét các trường hợp
x - 3 | 1 | 17 | -1 | -17 |
y - 4 | 17 | 1 | -17 | -1 |
x | 4 | 20 | 2 | -14 |
y | 21 | 5 | -13 | 3 |
Vậy các cặp (x;y) thỏa mãn là (4;21) ; (20;5) ; (2;-13) ; (-14;3)
3y2=12-\(|x-2|\)suy ra 3y2 + /x-2/ =12
Vì /x-2/ \(\ge0;\forall x\); y2\(\ge0;\forall y\)
mà x, y nguyên
TH1: y2=4 và /x-2/ = 0
suy ra y thuộc {2; -2} và x=2
TH2:
y2=1 và /x-2/ = 9
suy ra y thuộc {1; -1} và x thuộc {11; -7}
TH3:
y2=0 và /x-2/ = 12
suy ra y =0 và x thuộc {14; -10}
Tự kết luận nhé