K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
1 tháng 3 2024

Ta có:

`4x-5y-6xy+7=0`

`⇒(4x-6xy)-5y+7=0`

`⇒2x(2-3y)-5y+7=0`

`⇒6x(2-3y)-15y+21=0` 

`⇒6x(2-3y)+21-15y=0` 

`⇒6x(2-3y)+(10-15y)+11=0`

`⇒-6x(3y-2)-(15y-10)+11=0`

`⇒-6x(3y-2)-5(3y-2)=-11`

`⇒(3y-2)(6x+5)=11` 

Mà `x,y∈Z` 

Ta có bảng: 

3y - 2  1         -1   -11       11   
6x + 5  11   -11  -1    1 
y   1   `1/3` (loại)    -3    `13/3` (loại) 
x   1   `-16/6`(loại)    -1    `-2/3` (loại)

Vậy: ... 

Do 5y chia hết cho 5; 65 chia hết cho 5 => 4x chia hết cho 5

Mà (4;5)=1 => x chia hết cho 5

Mà 0 < 4x < 65

=> 0 < x < 17

=> x thuộc {5 ; 10 ; 15}

+ Với x = 5; ta có: 4 × 5 + 5 × y = 65

=> 20 + 5 x y = 65

=> 5 x y = 65 - 20 = 45

=> y = 45 : 5 = 9

+ Với x = 10, ta có: 4 × 10 + 5 x y = 65

=> 40 + 5 × y = 65

=> 5 x y = 65 - 40 = 25

=> y = 25 : 5 = 5

+ Với x = 15, ta có: 4 × 15 + 5 × y = 65

=> 60 + 5 × y = 65

=> 5 x y = 65 - 60 = 5

=> y = 5 : 5 = 1

Vậy x = 5; y = 9 hoặc x = 10; y = 5 hoặc x = 15; y = 1

chắc thek chứ mik ko chắc ăn

 

29 tháng 9 2019

xy + 4x = 35 + 5y

=> xy + 4x - 5y = 35

=> x(y + 4) - 5(y + 4) = 15

=> (x - 5)(y + 4) = 15

=> x - 5; y + 4 \(\in\)Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}

Lập bảng :

   x - 5    1  -1   3   -3   5  -5  15  -15
  y + 4   15 -15   5   -5   3  -3  1   -1
   x    6  4   8    2  10   0  20 -10
   y   11  19   1   -9  -1  -7  -3   -5

Vậy ...

\(x^2+5y^2+2xy-4y<-3\)

=>\(x^2+2xy+y^2+4y^2-4y+1<-3+1=-2\)

=>\(\left(x+y\right)^2+\left(2y-1\right)^2<-2\)

\(\left(x+y\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)

nên (x;y)∈∅

14 tháng 11 2017

y^2 luôn luôn lớn hơn hoặc bằng 0 => 5y^2 cũng luôn luôn lớn hơn hoặc = 0

=> 6x^2 nhỏ hơn hoặc bằng 74 => x^2 \(\le\)74/6 \(\le\)12

vì x nguyên nên x^2 có thể nhận các giá trị 0; 1;4;9

x^2 = 0 => 5y^2=74=>y^2=74/5 loại ( vì y không nguyên )

x^2 = 1 => 5y^2=68=> y^2= 68/5 loại ( vì y không nguyên)

x^2 = 4 => 5y^2= 50 => y^2 = 10 loại ( vì y không nguyên )

x^2 = 9 => 5y^2= 20 => y^2=4 => y = 2 hoặc y = -2, khi đó x = 3 hoặc x = -3

vậy : (x,y)=(3;2),(-3;-2),(-3;2),(3;-2)

tk mik na, thanks nhìu !

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)

\(\left|x-2\right|+\left|x-1\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)\(3-\left(y+2\right)^2\le3\forall y\)

nên \(1\le3-\left(y+2\right)^2\le3\)

=>\(-2\le-\left(y+2\right)^2\le0\)

=>\(2\ge\left(y+2\right)^2\ge0\)

mà x,y nguyên

nên ta sẽ có hai trường hợp

TH1: \(\left(y+2\right)^2=0\)

=>\(y+2=0\)

=>y=-2

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)

=>|x-2|+|x-1|=3(1)

TH1: x<1

=>x-1<0; x-2<0

(1) sẽ trở thành: 1-x+2-x=3

=>3-2x=3

=>2x=0

=>x=0(nhận)

TH2: 1<=x<2

=>x-1>=0; x-2<0

(1) sẽ trở thành: x-1+2-x=3

=>1=3(vô lý)

TH3: x>=2

=>x-1>0; x-2>=0

(1) sẽ trở thành: x-1+x-2=3

=>2x=6

=>x=3(nhận)

TH2: \(\left(y+2\right)^2=1\)

=>\(\left[\begin{array}{l}y+2=1\\ y+2=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}y=-1\\ y=-3\end{array}\right.\)

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)

=>\(\left|x-2\right|+\left|x-1\right|=3-1=2\) (2)

TH1: x<1

=>x-1<0; x-2<0

(2) sẽ trở thành: 1-x+2-x=2

=>3-2x=2

=>2x=1

=>\(x=\frac12\) (nhận)

TH2: 1<=x<2

=>x-1>=0; x-2<0

(2) sẽ trở thành: x-1+2-x=2

=>1=2(vô lý)

TH3: x>=2

=>x-1>0; x-2>=0

(2) sẽ trở thành: x-1+x-2=2

=>2x=5

=>\(x=\frac52\) (nhận)