
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Do 5y chia hết cho 5; 65 chia hết cho 5 => 4x chia hết cho 5
Mà (4;5)=1 => x chia hết cho 5
Mà 0 < 4x < 65
=> 0 < x < 17
=> x thuộc {5 ; 10 ; 15}
+ Với x = 5; ta có: 4 × 5 + 5 × y = 65
=> 20 + 5 x y = 65
=> 5 x y = 65 - 20 = 45
=> y = 45 : 5 = 9
+ Với x = 10, ta có: 4 × 10 + 5 x y = 65
=> 40 + 5 × y = 65
=> 5 x y = 65 - 40 = 25
=> y = 25 : 5 = 5
+ Với x = 15, ta có: 4 × 15 + 5 × y = 65
=> 60 + 5 × y = 65
=> 5 x y = 65 - 60 = 5
=> y = 5 : 5 = 1
Vậy x = 5; y = 9 hoặc x = 10; y = 5 hoặc x = 15; y = 1
chắc thek chứ mik ko chắc ăn

xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5; y + 4 \(\in\)Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}
Lập bảng :
x - 5 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y + 4 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
x | 6 | 4 | 8 | 2 | 10 | 0 | 20 | -10 |
y | 11 | 19 | 1 | -9 | -1 | -7 | -3 | -5 |
Vậy ...

\(x^2+5y^2+2xy-4y<-3\)
=>\(x^2+2xy+y^2+4y^2-4y+1<-3+1=-2\)
=>\(\left(x+y\right)^2+\left(2y-1\right)^2<-2\)
mà \(\left(x+y\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)
nên (x;y)∈∅


y^2 luôn luôn lớn hơn hoặc bằng 0 => 5y^2 cũng luôn luôn lớn hơn hoặc = 0
=> 6x^2 nhỏ hơn hoặc bằng 74 => x^2 \(\le\)74/6 \(\le\)12
vì x nguyên nên x^2 có thể nhận các giá trị 0; 1;4;9
x^2 = 0 => 5y^2=74=>y^2=74/5 loại ( vì y không nguyên )
x^2 = 1 => 5y^2=68=> y^2= 68/5 loại ( vì y không nguyên)
x^2 = 4 => 5y^2= 50 => y^2 = 10 loại ( vì y không nguyên )
x^2 = 9 => 5y^2= 20 => y^2=4 => y = 2 hoặc y = -2, khi đó x = 3 hoặc x = -3
vậy : (x,y)=(3;2),(-3;-2),(-3;2),(3;-2)
tk mik na, thanks nhìu !

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
mà \(\left|x-2\right|+\left|x-1\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\) và \(3-\left(y+2\right)^2\le3\forall y\)
nên \(1\le3-\left(y+2\right)^2\le3\)
=>\(-2\le-\left(y+2\right)^2\le0\)
=>\(2\ge\left(y+2\right)^2\ge0\)
mà x,y nguyên
nên ta sẽ có hai trường hợp
TH1: \(\left(y+2\right)^2=0\)
=>\(y+2=0\)
=>y=-2
Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
=>|x-2|+|x-1|=3(1)
TH1: x<1
=>x-1<0; x-2<0
(1) sẽ trở thành: 1-x+2-x=3
=>3-2x=3
=>2x=0
=>x=0(nhận)
TH2: 1<=x<2
=>x-1>=0; x-2<0
(1) sẽ trở thành: x-1+2-x=3
=>1=3(vô lý)
TH3: x>=2
=>x-1>0; x-2>=0
(1) sẽ trở thành: x-1+x-2=3
=>2x=6
=>x=3(nhận)
TH2: \(\left(y+2\right)^2=1\)
=>\(\left[\begin{array}{l}y+2=1\\ y+2=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}y=-1\\ y=-3\end{array}\right.\)
Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
=>\(\left|x-2\right|+\left|x-1\right|=3-1=2\) (2)
TH1: x<1
=>x-1<0; x-2<0
(2) sẽ trở thành: 1-x+2-x=2
=>3-2x=2
=>2x=1
=>\(x=\frac12\) (nhận)
TH2: 1<=x<2
=>x-1>=0; x-2<0
(2) sẽ trở thành: x-1+2-x=2
=>1=2(vô lý)
TH3: x>=2
=>x-1>0; x-2>=0
(2) sẽ trở thành: x-1+x-2=2
=>2x=5
=>\(x=\frac52\) (nhận)
Ta có:
`4x-5y-6xy+7=0`
`⇒(4x-6xy)-5y+7=0`
`⇒2x(2-3y)-5y+7=0`
`⇒6x(2-3y)-15y+21=0`
`⇒6x(2-3y)+21-15y=0`
`⇒6x(2-3y)+(10-15y)+11=0`
`⇒-6x(3y-2)-(15y-10)+11=0`
`⇒-6x(3y-2)-5(3y-2)=-11`
`⇒(3y-2)(6x+5)=11`
Mà `x,y∈Z`
Ta có bảng:
Vậy: ...