Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x + xy + y = 1
=> x(2 + y) + y + 2 = 1 + 2
=> x(y + 2) + 1(y + 2) = 3
=> (x + 1)(y + 2) = 3
=> x + 1 và y + 2 thuộc Ư(3) = {-1; 1; -3; 3}
ta có bảng :
x+1 | -1 | 1 | -3 | 3 |
y+2 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 |
y | -5 | 1 | -3 | -1 |
\(xy-2x+y+1=0\\ x\left(y-2\right)+\left(y-2\right)=-3\\ \left(x+1\right)\left(y-2\right)=-3\)
Lập bảng
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy \(\left(x;y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)
xy−2x+y+1=0x(y−2)+(y−2)=−3(x+1)(y−2)=−3xy−2x+y+1=0x(y−2)+(y−2)=−3(x+1)(y−2)=−3
Lập bảng
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy (x;y)∈{(0;5);(2;3);(−2;−1);(−4;1)}
Do x,y thuộc Z
a)(x+1)(y-2)=2=1.2=(-1).(-2)
Thay lần lượt có 4 cặp nhé
b)(3-x)(xy+y)=1=1.1=(-1).(-1)
*)3-x=1 và xy+y=1
=>x=2 và y(x+1)=1=1.1=>y= x=0(L vì x nhận 2 giá trị khác nhau)
*)3-x=-1 và xy+y=-1
<=>x=4 và y(x+1)=-1 giải ra thì TH này cũng bị loại
Ta có \(\left(2x+3\right)\left(y-1\right)=-6=-3.2=-2.3=-1.6=-6.1\)
\(TH1\hept{\begin{cases}2x+3=3\\y-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
\(TH2\hept{\begin{cases}2x+3=-2\\y-1=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=4\end{cases}}}\)(loại)
\(TH3\hept{\begin{cases}2x+3=-3\\y-1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=3\end{cases}}}\)
Tương tự như vậy giải các TH còn lại nha!
#Học tốt
Ta có :
( 2x + 3 ) . ( y - 1 ) = 1. ( -6 ) = ( - 1 ) . 6 = 2 . ( -3 ) = (-2) . 3
Sau đó lập bảng xét từng giá trị một nha!
Ta có: \(\left(2x+3\right).\left(y-1\right)=-6\)
\(x;y\in Z\)
\(\Rightarrow\left(2x+3\right);\left(y-1\right)\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Lập bảng giá trị:
2x+3 | 1 | 2 | 10 | 5 | -1 | -10 | -2 | -5 |
y-1 | 10 | 5 | 1 | 2 | -10 | -1 | -5 | -2 |
x | 1 | -1/2 | 7/2 | 1 | -2 | -13/2 | -5/2 | -4 |
y | 11 | 6 | 2 | 3 | -9 | 0 | -4 | -1 |
Vậy.............................................................................