K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\forall x\)

\(-\left(y+2\right)^2+3\le3\forall y\)

\(\left|x+2\right|+\left|x-1\right|=-\left(y+2\right)^2+3\)

nên \(\begin{cases}\left|x+2\right|+\left|x-1\right|=3\\ 3-\left(y+2\right)^2=3\end{cases}\Rightarrow\begin{cases}\left|x+2\right|+\left|1-x\right|=3\\ \left(y+2\right)^2=0\end{cases}\)

=>\(\begin{cases}\left(x+2\right)\left(x-1\right)\le0\\ y+2=0\end{cases}\)

=>\(\begin{cases}-2\le x\le1\\ y=-2\end{cases}\Rightarrow\begin{cases}x\in\left\lbrace-2;-1;0;1\right\rbrace\\ y=-2\end{cases}\)

Vậy: (x;y)∈{(-2;-2);(-1;-2);(0;-2);(1;-2)}

17 tháng 8 2019

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{13}\left(x< y< z\right)\)

\(x+y+z=51\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{13}=\frac{x+y+z}{9+12+13}=\frac{51}{34}=\frac{3}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=18\\z=\frac{39}{2}\end{cases}}\)

(2x-y+7)^2022>=0 với mọi x,y

|x-3|^2023>=0 với mọi x,y

Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y

mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)

=>2x-y+7=0 và x-3=0

=>x=3 và y=2x+7=2*3+7=13