K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

biến đổi biểu thức ta có:

\(\left(x^2-1\right):2=y^2\)

ta có: x và y là số nguyên dương nên:

+) x > y và x là số lẻ nên:

từ đó đặt x=2k+1(k là số nguyên dương)

biểu thức tương đương :

\(2.k.\left(k+1\right)=y^2\left(+\right)\)

để ý ta thấy:

y là số nguyên tố nên yse là số nguyên dương và có 3 ước là:

(1,y,y2)

từ(1) nên thây được y2 chia hết cho 2 => y=2=>k=1

vậy x=3

nên:y=2 và x=3

NV
13 tháng 2 2022

- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)

\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)

- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1

Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2

\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên

Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)

21 tháng 10 2023

tại sao y<0 lại ko thuoc Z

2 tháng 12 2017

\(PT\Leftrightarrow x^2=2y^2+1\). Vì x2 là số chính phương lẻ.

\(\Rightarrow x^2=2y^2+1\equiv1\left(mod4\right)\)mà y số nguyên.

\(\Rightarrow y=2,x=3\)

3 tháng 12 2017

Lê Minh Tú cảm ơn bạn nhiều nhé !

AH
Akai Haruma
Giáo viên
2 tháng 1

Lời giải:

Nếu y chẵn thì y=2. Khi đó: $x^2=2y^2+1=2.2^2+1=9\Rightarrow y=3$ 

Nếu $y$ lẻ: 

Ta biết rằng 1 scp khi chia 8 có dư 0,1,4 nên với $y$ lẻ suy ra $y^2$ chia $8$ dư $1$
$\Rightarrow x^2=2y^2+1$ chia $8$ dư $2.1+1=3$
(vô lý vì $x^2$ là scp nên không thể chia 8 dư 3)

Vậy $(x,y)=(3,2)$

5 tháng 5 2016

Ta co: x2-2y2 = 1

Vi x,y deu la so nguyen to nen: x2\(\ge\) 4           2y2\(\ge\)8

Vi vay: x2-2y2 < 0  (trái với đề bài đã cho)

Suy ra: Khong co gia tri nao cuar x,y ca

7 tháng 4 2021

X=3,Y=2

25 tháng 3 2017

12.1=12

25 tháng 3 2017

\(x^2-2y^2=1\)

\(\Leftrightarrow x^2=2y^2+1\)

Vì \(x^2\)là số chính phương lẻ

\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố

\(\Rightarrow y=2;x=3\)