K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

• Hình 4.10a)

Ta có: \(\dfrac{{EM}}{{EN}} = \dfrac{2}{3};\dfrac{{MF}}{{PF}} = \dfrac{3}{{4,5}} = \dfrac{2}{3}\) nên \(\dfrac{{EM}}{{EN}} = \dfrac{{MF}}{{PF}}\)

Vì \(\dfrac{{EM}}{{EN}} = \dfrac{{MF}}{{PF}}\), E ∈ MN, F ∈ MP nên theo định lí Thalès đảo ta suy ra EF // MN.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

• Hình 4.10b)

* Ta có: \(\dfrac{{HF}}{{KF}} = \dfrac{{14}}{{12}} = \dfrac{7}{6};\dfrac{{HM}}{{MQ}} = \dfrac{{15}}{{10}} = \dfrac{3}{2}\)

Vì \(\dfrac{{HF}}{{KF}} \ne \dfrac{{HM}}{{MQ}}\) nên MF không song song với KQ.

* Ta có: \(\dfrac{{MQ}}{{MH}} = \dfrac{{10}}{{15}} = \dfrac{2}{3};\dfrac{{EQ}}{{EK}} = \dfrac{{12}}{{18}} = \dfrac{2}{3}\)

Vì \(\dfrac{{MQ}}{{MH}} = \dfrac{{EQ}}{{EK}}\); F ∈ HK; M ∈ HQ nên theo định lí Thalès đảo ta suy ra ME // HK.

22 tháng 4 2017

Trên hình 13a ta có:

APPBAPPB = 3838; AMMCAMMC= 515515 = 131338381313 nên APPBAPPBAMMCAMMC => PM và MC không song song.

Ta có CNNB=217=3CMMA=155=3}=>CMMA=CNNBCNNB=217=3CMMA=155=3}=>CMMA=CNNB => MN//AB

Trong hình 13b

Ta có: OAAAOA′A′A = 2323; OBBBOB′B′B = 34,534,5 = 2323

=>

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a) Theo đề bài: d // BC nên DE // BC

Suy ra DECB là hình thang.

Vì tam giác ABC cân tại A nên \(\widehat B = \widehat C\).

Hình thang DECB có \(\widehat B = \widehat C\) nên tứ giác DECB là hình thang cân.

b) Hình thang cân DECB có BE và CD là hai đường chéo.

Do đó BE = CD (đpcm).

19 tháng 6 2024

vì BE và CD là 2 đường chéo nên BE = CD.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Quan sát hình 35 ta thấy: AB//CD; AD// BC.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Hai cạnh AB và CD của tứ giác ABCD có song song với nhau.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.

Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:

\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)

Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).

Vậy x = 4 (đvđd).

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Tứ giác ABCD trong Hình 3.41b là hình chữ nhật vì có \(\widehat A = \widehat B = \widehat C = \widehat D = {90^o}\)

Tứ giác ABCD trong Hình 3.41a và Hình 3.41c không phải là hình chữ nhật vì không có 4 góc vuông.

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Xét tam giác DBC, ta có: 

O là trung điểm cạnh BD (tính chất hình chữ nhật)

OH // BC (cùng vuông góc với CD)

⇒ OH là đường trung bình tam giác BCD.

⇒ H là trung điểm của CD (đpcm).

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

• Hình 3.51a)

Tứ giác đã cho có hai đường chéo cắt nhau tại trung điểm của mỗi đường và chúng vuông góc với nhau nên tứ giác đó là hình thoi.

• Gọi tứ giác trong Hình 3.51b) là tứ giác ABCD.

Vì \(\widehat {{B_1}} = \widehat {{D_1}}\) mà hai góc này ở vị trí so le trong nên AB // CD.

Mà AB = CD nên tứ giác ABCD là hình bình hành.

Mặt khác, \(\widehat {{D_1}} = \widehat {{D_2}}\) hay DB là tia phân giác của \(\widehat {A{\rm{D}}C}\)

Khi đó, hình bình hành ABCD có DB là tia phân giác của \(\widehat {A{\rm{D}}C}\).

Do đó tứ giác ABCD là hình thoi.

• Tứ giác trong Hình 3.51c) hai đường chéo vuông góc với nhau và có đường chéo là đường vuông góc của một góc của tứ giác.

Từ đó ta suy ra tứ giác đã cho không phải là hình thoi.

Vậy Hình 3.51a và Hình 3.51b là hình thoi.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

* Hình bình hành có những tính chất sau:

- Các cạnh đối bằng nhau.

- Các góc đối bằng nhau.

- Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

* Dấu hiệu nhận biết hình bình hành:

- Tứ giác có các cặp đối bằng nhau là hình bình hành.

- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.