Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2a^2-3a-2}{a^2-4}=2\)
\(\Rightarrow2a^2-3a-2=2\left(a^2-4\right)\)
\(\Rightarrow2a^2-3a-2=2a^2-4\)
\(\Rightarrow-3a-2=-4\)
\(\Rightarrow-3a=-2\Rightarrow a=\frac{2}{3}\)
b) \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)
\(\Rightarrow\frac{\left(3a-1\right)\left(a+3\right)+\left(3a+1\right)\left(a-3\right)}{\left(3a+1\right)\left(a+3\right)}=2\)
\(\Rightarrow\frac{6a^2-6}{3a^2+10a+3}=2\)
\(\Rightarrow6a^2-6=2\left(3a^2+10a+3\right)\)
\(\Rightarrow6a^2-6=6a^2+20a+6\)
\(\Rightarrow-6=20a+6\Rightarrow20a=-12\)
\(\Rightarrow a=\frac{-3}{5}\)
a) \(a\ne\frac{5}{2};\frac{2}{3}\)
Đặt \(A=\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2+\frac{2}{3a-2}-\frac{4}{2a-5}\)
\(A=2\Leftrightarrow\frac{2}{3a-2}-\frac{4}{2a-5}=0\Leftrightarrow4a-12a+8=0\)
\(\Leftrightarrow-8a-2=0\Leftrightarrow-2\left(4a+1\right)=0\Leftrightarrow a=-\frac{1}{4}\)
Vậy A=2 <=> a=-1/4
b) \(a\ne-\frac{4}{3};-4\)
Đặt \(B=\frac{3a+2}{3a+4}+\frac{a-2}{a+4}=2-\frac{2}{3a+4}-\frac{6}{a+4}\)
\(B=2\Leftrightarrow-\frac{2}{3a+4}-\frac{6}{a+4}=0\Leftrightarrow-2a-8-18a-24=0\)
\(\Leftrightarrow-20a-32=0\Leftrightarrow a=-\frac{8}{5}\)
Vậy B=2 <=> a= -8/5
a.
\(\dfrac{2a^2-3a-2}{a^2-4}=2\)
\(\Leftrightarrow\dfrac{2a^2-4a+a-2}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{\left(2a^2-4a\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{2a\left(a-2\right)+\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=2\)
\(\Leftrightarrow\dfrac{\left(2a+1\right)\left(a-2\right)}{\left(a-2\right)\left(a+1\right)}=2\)
\(\Leftrightarrow\dfrac{2a+1}{a+1}=2\)
\(\Leftrightarrow\dfrac{2a+1}{a+1}=\dfrac{2\left(a+1\right)}{a+1}\)
\(\Leftrightarrow2a+1=2a+2\)
Suy ra pt vô nghiệm
a) \(\dfrac{2a^{2^{ }}-3a-2}{a^2-4}\)=2
<=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)=2 (1)
ĐKXĐ: a-2 #0 => a#2
a+2#0 -> a#-2
(1) <=> \(\dfrac{2a^{2^{ }}-3a-2}{\left(a-2\right)\left(a+2\right)}\)= \(\dfrac{2\left(a^{^2}-4\right)}{\left(a-2\right)\left(a+2\right)}\)
=> 2a2 - 3a - 2 = 2a2 - 8
<=> 2a2 - 3a - 2 - 2a2 + 8 = 0
<=> -3a + 6 = 0
<=> -3 ( a-2)
<=> -3 = 0 ( vô no )
a-2 = 0 => a = 2
Vậy với A=2 thì biểu thức có giá trị = 2
\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)