Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) x chia hết cho 15 và x chia hết cho 180 => x ∈ BC (15 ; 180)
Vì 180 chia hết cho 15 => BCNN (15 ; 180) = 180
=> BC (15 ; 180) = B (180) = {0 ; 180 ; 360 ; 540 ; ...}
+) Có: 30 = 2 . 3 . 5
45 = 32 . 5
=> BCNN (30 ; 45) = 2 . 32 . 5 = 90
=> BC (30 ; 45) = B (90) = {0 ; 90 ; 180 ; 270 ; 360 ; 450 ; 540 ; ...}
Vì BC (30 ; 45) < 500 => BC (30 ; 45) = {0 ; 90 ; 180 ; 270 ; 360 ; 450}
Gọi các số phải tìm là a và b, giả sử a nhỏ hơn hoặc bằng b. Ta có (a, b) = 10 nên a = 10.a', b = 10.b', (a', b') = 1, a' nhỏ hơn hoăc bằng b'. Do đó a. b = 100.a'.b' (1). Mặt khác ab = [a, b]. (a, b) = 900. 10 = 9000 (2).
Từ (1) và (2) suy ra a'. b' = 90. Ta có các trường hợp sau :bạn tự suy ra nhé
hok tốt
1. Ta có: a chia có 7 dư 3 => a - 3 chia hết cho 7
=> 4 (a - 3) chia hết cho 7 => 4a - 12 chia hết cho 7
=> 4a - 12 + 7 chia hết cho 7 => 4a - 5 chia hết cho 7 (1)
a chia cho 13 dư 11 => a - 11 chia hết cho 13
=> 4 (a - 11) chia hết cho 13 => 4a - 44 chia hết cho 13
=> 4a - 44 + 39 chia hết cho 13 => 4a - 5 chia hết cho 13 (2)
a chia cho 17 dư 14 => a - 14 chia hết cho 17
=> 4 ( a - 14) chia hết cho 17 => 4a - 56 chia hết cho 17
=> 4a - 56 + 51 chia hết cho 17 => 4a - 5 chia hết cho 17 (3)
Từ (1), (2) và (3) => 4a - 5 thuộc BC(7;13;17)
Mà a nhỏ nhất => 4a - 5 nhỏ nhất
=> 4a - 5 = BCNN(7;13;17) = 7 . 13 . 17 = 1547
=> 4a = 1552 => a= 388
2. Gọi ƯCLN(a,b) = d
=> a = d . m (ƯCLN(m,n) = 1)
b = d . n
Do a < b => m<n
Vì BCNN(a,b) . ƯCLN(a,b) = a . b
\(\Rightarrow BCNN\left(a,b\right)=\frac{a\cdot b}{ƯCLN\left(a,b\right)}=\frac{d\cdot m\cdot d\cdot n}{d}=m\cdot n\cdot d\)
Vì BCNN(a,b) + ƯCLN(a,b) = 19
=> m . n . d + d = 19
=> d . (m . n + 1) = 19
=> m . n + 1 thuộc Ư(19); \(m\cdot n+1\ge2\)
Ta có bảng sau:
d m . n +1 m . n m n a b 1 19 18 1 2 18 9 1 18 2 9
Vậy (a,b) = (2;9) ; (1 ; 18)
3.
Những số là bội của 12 thì là BCNN của 3 số tự nhiên liên tiếp.
các bạn só thể giải ra cho mình hiểu được không? Mình không biết bài này ?