Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)
Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)
Áp dụng BĐT AM-GM ta có:
\(x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{x^2\cdot\sqrt{x}\cdot\sqrt{x}}=3x\)
Tương tự ta có: \(\hept{\begin{cases}y^2+2\sqrt{y}\ge3y\\z^2+2\sqrt{z}\ge3z\end{cases}}\)
Cộng theo vế các BĐT trên ta được:\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\). Suy ra
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+xz\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+z=3\\x=y=z\end{cases}}\Rightarrow x=y=z=1\)
Vậy hệ pt có nghiệm là (x;y;z)=(1;1;1)
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)
Áp dụng BĐT Buniacoxki ta có
\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)
=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)
=> \(A\ge\sqrt{3}\)
\(MinA=\sqrt{3}\)khi x=y=z=3
Ta có PT (1) <=> ( x + \(2\sqrt{x}\)+ 1) - (y + z + \(2\sqrt{yz}\)) - \(2\left(\sqrt{y}+\sqrt{z}\right)\)- 1 = 0
<=> (\(1+\sqrt{x}\))2 - (\(1+\sqrt{y}+\sqrt{z}\))2 = 0
<=> \(\orbr{\begin{cases}2+\sqrt{x}+\sqrt{y}+\sqrt{z}=0\\\sqrt{x}-\sqrt{y}-\sqrt{z}=0\end{cases}}\)
Thế vào pt (2) được
y + z \(-\sqrt{3z}-\sqrt{yz}\)+ 1 = 0
<=> (\(\frac{\sqrt{z}}{2}-\sqrt{y}\))2 + (\(\frac{\sqrt{3z}}{2}-1\))2 = 0
<=> \(\hept{\begin{cases}z=\frac{4}{3}\\y=\frac{1}{3}\\x\:=3\end{cases}}\)