Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
giả sử 1 trong 3 số=2
=>abc chia hết cho 2
=>a;c chia hết cho 2
=>a=c=2=>b=2
với a;b;c cùng lẻ=>a^2+c^2 chia hết cho 2
mà abc ko chia hết cho 2=>vô lí
Vậy a=b=c=2
abc<ab+bc+ca
->abc/abc<ab/abc+bc/abc+ca/abc
->1<1/a+1/b+1/c
ko mất tính tổng quát gsử a<=b<=c
->1/a>=1/b>=1/c
->1/a+1/b+1/c<=3/a
->3/a>=1
->a<=3 .mà a là snt
->a=2;3
+,a=2 thì1/b+1/c=1/2
mà 1/b+1/c<=2/b
->2/b>=1/2
->b<=4 mà b là snt
->b=2;3;4. bn tự giản từng trường hợp của b mà tìm c nhé
+,b=3 giải tương tự b=2
có j ko hỉu bn nt cho mk nha
Các bộ ba chữ số nguyên tố liên tiếp có thể là (2;3;5); (3;5;7)
Tính 22 + 32 + 52 = 4 + 9 + 25 = 38 là hợp số => Loại
Tính 32 + 52 + 72 = 9 + 25 + 49 = 83 là số nguyên tố
Vậy bộ ba số đó là 3;5; 7
Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)
Lại có \(a^2-a=a\left(a-1\right)⋮2\)
Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)
Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)
khó thế bạn ơi