\(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

\(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)

Xét VT : \(3x^2-2x-5=\left(3x^2-3\right)-\left(2x+2\right)\)

\(=3\left(x^2-1\right)-2\left(x+1\right)=3\left(x+1\right)\left(x-1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-5\right)\)

Vì \(\frac{\left(x+1\right)\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)

Nên ta có thể suy ra được M sẽ có dạng  \(\left(x+1\right)\left(2x-3\right)\)

\(\Rightarrow\frac{\left(x+1\right)\left(3x-5\right)}{3x-5}=\frac{M}{2x-3}\)

\(\Rightarrow M=\left(x+1\right)\left(2x-3\right)=2x^2-x-3\)

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

15 tháng 12 2018

\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)

15 tháng 12 2018

\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)

\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)

==>Sai đề không mem

17 tháng 2 2020

\(\Leftrightarrow\frac{2x-9}{2x-5}-1+\frac{3x}{3x+2}-1=0\)

\(\Leftrightarrow\frac{-4}{2x-5}+\frac{-2}{3x+2}=0\)

\(\Leftrightarrow\frac{2}{2x-5}+\frac{1}{3x+2}=0\)

\(\Leftrightarrow\frac{8x-1}{\left(2x-5\right)\left(3x+2\right)}=0\Rightarrow x=\frac{1}{8}\)

17 tháng 2 2020

ta có :

\(\frac{2x-9}{2x-5}+\frac{3x}{3x+2}=2\\ \Rightarrow\frac{\left(2x-5\right)-4}{2x-5}+\frac{\left(3x+2\right)-2}{3x+2}=2\\ \Rightarrow1-\frac{4}{2x-5}+1-\frac{2}{3x+2}=2\\ \Rightarrow\frac{-4}{2x-5}-\frac{2}{3x+2}=0\\ \Rightarrow\frac{-4}{2x-5}=\frac{2}{3x+2}\\ \Rightarrow-4.\left(3x+2\right)=2.\left(2x-5\right)\\ \Rightarrow-12x-8=4x-10\\ \Rightarrow16x=2\\ \Rightarrow x=\frac{1}{8}\)

vậy ...

chúc bạn học tốt !!!

25 tháng 8 2020

a) ( x - 5 )( 2x + 3 ) + 2x( 1 - x )

= 2x2 - 7x - 15 + 2x - 2x2

= -5x - 15

= -5( x + 3 )

b) ( 3x - 5 )2 - ( x + 5 )( 5 - x ) - 5/2( -2x )2

= 9x2 - 30x + 25 + ( x + 5 )( x - 5 ) - 5/2.4x2

= 9x2 - 30x + 25 + x2 - 25 - 10x2

= -30x

c) ( 3x + 2 )( 4 - 6x + 9x2 ) - 3x( 3x - 2 )2 + 12( -2/3 - 3x2 )

= ( 3x )3 + 23 - 3x( 9x2 - 12x + 4 ) - 8 - 36x2

= 27x3 + 8 - 27x3 + 36x2 - 12x - 8 - 36x2

= -12x

25 tháng 8 2020

a, \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)=2x^2+3x-10x-15+2x-2x^2=-5x-15\)

b, \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)

\(=9x^2-30x+25-\left(5x-x^2+25-5x\right)-\frac{5}{2}\left(4x^2\right)\)

\(=-30x\)

10 tháng 4 2020

a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)

\(ĐK:3x^2-7x+2\ne0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)

=> 3x+ 5x + 2 =0

<=> 3x2 + 3x + 2x +2 = 0

<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0

<=> (  x + 1 )(3x + 2 ) =0

<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = -2/3 

b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)

<=> 2x2+ 10x + 12 = 0

<=> x2 + 5x+ 6 =0

<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\) 

Vậy x = -3 

c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\)                         \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)

<=> x3 + x2 -x -1 =0

<=> ( x - 1 )(x2 + 2x + 1 ) 

<=> ( x-1 ) (x+1)2 = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = { 1 ; -1 }

11 tháng 4 2020

a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)

<=> 3x^2 + 5x - 2 = 0

<=> (3x - 1)(x + 2) = 0

<=> 3x - 1 = 0 hoặc x + 2 = 0

<=> 3x = 1 hoặc x = -2

<=> x = 1/3 (ktm) hoặc x = -2 (tm)

=> x = -2

b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)

<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)

<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)

<=> 2(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)

<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)

<=> (x + 1)(x - 1) = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự