Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đa thức M = x2 - 2xy + 5x2 - 1 = 6x2 - 2xy - 1 có bậc 2.
Đa thức N = x2y2 - y2 + 5x2 - 3x2y + 5 có bậc 4.
b) N + M = x2y2 – y2 + 11x2 – 3x2y + 4 – 2xy
1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11
1/Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2-2x+1=16\)
\(\Leftrightarrow\left(x-1\right)^2=16\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy x = 5 hoặc x = -3
2/ Bậc của đa thức: bậc 3
P(x) = 3x4 + x3 - 2x2 + x2 - 1/4x
Bậc: 4
Hệ số cao nhất: 3
Hệ số tự do: không có :v
Q(x) = 3x4 - 4x3 + 3x2 - 2x2 - 1/4
Bậc: 4
Hệ số cao nhất: 4
Hệ số tự do: 1/4
a) P(x) + Q(x) = 3x4 + x3 - 2x2 + x2 - 1/4x + 3x4 - 4x3 + 3x2 - 2x2 - 1/4
= (3x4 + 3x4) + (x3 - 4x3) + (-2x2 + x2 + 3x2 - 2x2) - 1/4x - 1/4
= 6x4 - 3x3 - 1/4x - 1/4
P(x) - Q(x) = (3x4 + x3 - 2x2 + x2 - 1/4x) - (3x4 - 4x3 + 3x2 - 2x2 - 1/4)
= 3x4 + x3 - 2x2 + x2 - 1/4x - 3x4 + 4x3 - 3x2 + 2x2 + 1/4
= (3x4 - 3x4) + (x3 + 4x3) + (-2x2 + x2 - 3x2 - 2x2) - 1/4x + 1/4
= 5x3 - 2x2 - 1/4x + 1/4
Q(x) - P(x) = (3x4 - 4x3 + 3x2 - 2x2 - 1/4) - (3x4 + x3 - 2x2 + x2 - 1/4x)
= 3x4 - 4x3 + 3x2 - 2x2 - 1/4 - 3x4 - x3 + 2x2 - x2 + 1/4x
= (3x4 - 3x4) + (-4x3 - x3) + (3x2 - 2x2 + 2x2 - x2) + 1/4 + 1/4x
= -5x3 + 2x2 - 1/4 + 1/4x
b) M(x) = P(x) - Q(x)
= 5x3 - 2x2 - 1/4x + 1/4
M(-2) = 5.(-2)3 - 2.(-2)2 - 1/4.(-2) + 1/4
= -40 - 8 + 1/2 + 1/4
= -189/4
sai đâu sửa hộ nha
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Tìm bậc của mỗi đa thức sau:
a) 3x2 – \(\frac{1}{2}\) x + 1 + 2x – x2;
b) 3x2 + 7x3 – 3x3 + 6x3 – 3x2.
a. 3x\(^2\) - \(\frac{1}{2}\)x + 1 + 2x - x\(^2\)
= 3x\(^2\) - x\(^2\) - \(\frac{1}{2}\) x + 2x + 1
= 2x\(^2\) - \(\frac{5}{2}\) x + 1
\(\Rightarrow\) Bậc của đa thức trên là 2
b. Làm tương tự câu a nhé. Chúc bạn học tốt ! :3
a, 3x^2 - 1/2x + 1 + 2x - x^2
= ( 3x^2 - x^2 ) + ( -1/2x + 2x) + 1
= 4x^2 + 3/2 + 1
Bậc của đa thức 3x^2 - 1/2x + 1 + 2x - x^2 là : 2
b, 3x^2 + 7x^3 - 3x^3 + 6x^3 - 3x^2
= ( 3x^2 - 3x^2 ) + ( 7x^3 - 3x^3 + 6x^3 )
= 0 + 10x^3
= 10x^3
Bậc của đa thức 3x^2 + 7x^3 - 3x^3 + 6x^3 - 3x^2 là 3
\(M\left(x\right)=\frac{1}{2}x^3-x^2-3x+3\)
\(N\left(x\right)=\frac{1}{2}x^3+x^2-4x+6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)
\(M\left(x\right)-N\left(x\right)=\frac{1}{2}x^3-x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-\frac{1}{2}x^3\right)+\left(-x^2-x^2\right)+\left(-3x+4x\right)+\left(3-6\right)\)
\(M\left(x\right)-N\left(x\right)=-2x^2+x-3\)
A(x)=M(x)-N(x)=-2x2+x-3=0
đang suy nghĩ tí làm lại sau :v
Bài làm:
a) \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)
\(P=2x^4y^5-xy^4+x^3-y^2+4\)
Bậc của đa thức P là 9
b) Ta có:
\(N\left(-1\right)=2.\left(-1\right)+7+\left(-1\right)^3-2.\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)
\(N\left(-1\right)=-2+7-1-2-1+\frac{1}{2}\)
\(N\left(-1\right)=\frac{3}{2}\)
và
\(N\left(2\right)=2.2+7+2^3-2.2^2+2+\frac{1}{2}\)
\(N\left(2\right)=4+7+8-8+2+\frac{1}{2}\)
\(N\left(2\right)=\frac{27}{2}\)
c) Tại \(x=-\frac{1}{2};y=2\)thì giá trị của biểu thức P là:
\(P=2.\left(-\frac{1}{2}\right)^4.2^5-\left(-\frac{1}{2}\right).2^4+\left(-\frac{1}{2}\right)^3-2^2+4\)
\(P=4+8-\frac{1}{8}-4+4\)
\(P=\frac{95}{8}\)
Học tốt!!!!
a, Ta có :
\(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)
\(=2x^4y^5+x^3+4-y^2-xy^4\)
Bậc : 9
b,TH1 : \(N\left(-1\right)=2\left(-1\right)+7+\left(-1\right)^3-2\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)
\(=-2+7-1-2-1+\frac{1}{2}=\frac{3}{2}\)
TH2 : tương tự
c, Thay vào tính thôi.
Cách làm: trước hết rút gọn đa thức, sau đó tìm hạng tử có bậc cao nhất ⇒ bậc của đa thức.
⇒ Bậc 2 là bậc cao nhất.
⇒ Đa thức có bậc 2 (bậc của đa thức là bậc của hạng tử có bậc cao nhất).