Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2^{1991}}=3^{3982}\)
Sau đó bạn áp dụng ở đây: Câu hỏi của nguyen thi kim anh
Bài hơi khác nhưng bạn chịu khó tham khảo nha
a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)
Tìm 3 chữ số tận cùng là tìm số dư của phép chia 2100 cho 1000
Trước hết ta tìm số dư của phép chia 2100 cho 125
Vận dụng bài 1 ta có 2100 = B(125) + 1 mà 2100 là số chẵn nên 3 chữ số tận cùng của nó chỉ có thể là 126, 376, 626 hoặc 876
Hiển nhiên 2100 chia hết cho 8 vì 2100 = 1625 chi hết cho 8 nên ba chữ số tận cùng của nó chia hết cho 8
trong các số 126, 376, 626 hoặc 876 chỉ có 376 chia hết cho 8
Vậy: 2100 viết trong hệ thập phân có ba chữ số tận cùng là 376
Tổng quát: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của nó là 376
Cách đồng dư thức:
a) 220 = 76 (mod 100)
2200 = 7620 = 76 (mod 100)
2201 = 52 (mod 100)
2202 = 4 (mod 100)
2203 = 8 (mod 100)
2204 = 16 (mod 100)
2205 = 32 (mod 100)
2206 = 64 (mod 100)
2200 + 2201 + ......... + 2206 = 76 + 52 + 4 + 8 + 16 + 32 + 64 = ................52 (mod 100)
Vậy chữ số tận cùng của tổng trên là 52.
b) 22000 = 76100 = 76 (mod 100)
32004 = 76 . 24 = 16 (mod 100)
22005 = 16 . 2 = 32 (mod 100)
32004 + 22005 = 32 . 16 = ............12 (mod 100)
Vậy chữ số tận cùng của tổng là 12.
\(3^{2^{1991}}=3^{3982}=3^{82}\left(mod1000\right)\)
\(3^2=9\left(mod1000\right)\)
\(3^{10}=49\left(mod1000\right)\)
\(\left(3^{10}\right)^5=3^{50}=49^5=249\left(mod1000\right)\)
\(\left(3^{10}\right)^3=3^{30}=49^3=649\left(mod1000\right)\)
\(3^{82}=3^{50}.3^{30}.3^2=649.249.9=409\left(mod1000\right)\)
vậy 3 chữ số tận cùng là 409
dấu = thay bằng dấu đồng dư nha , tại mình hong biết viết
=9
nhé bày mình cách giải với Minh Triều