K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

a/ A = (3;\(+\infty\)), B=[0;4]

A \(\cap\) B= (3;4)

A\(\cup\) B=[0;+\(\infty\))

A\B= (4;\(+\infty\))

B\A= [0;3]

b/ A=(\(-\infty\);4], B=(2;\(+\infty\))

A\(\cap\)B=(2;4]

A\(\cup\)B= R

A\B= (\(-\infty\);2]

B\A=(4;\(+\infty\))

c/ A=[0;4] , B=(\(-\infty\);2]

A\(\cap\)B= [0;2)

\(A\cup B\) = (\(-\infty\);4]

A\ B=[2;4]

B\A=(\(-\infty\);0)

18 tháng 12 2020

undefined

27 tháng 9 2019

B

17 tháng 9 2023

\(A=\left(-3;-1\right)\cup\left(1;2\right)\)

\(B=\left(-1;+\infty\right)\)

\(C=\left(-\infty;2m\right)\)

\(A\cap B=\left(-3;-1\right)\)

Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)

\(\Leftrightarrow m\ge-\dfrac{1}{2}\)

Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài

9 tháng 8 2023

\(A\cup B=R\)

\(C\cap\left(A\cup B\right)=[-3;5)\)

9 tháng 8 2023

Chịu hẳn :)
Đầu đội trời, chân đạp đất, mình ta chống đỡ trong môi trường đấu tranh khắc nhiệt.

NV
15 tháng 5 2020

\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)

3 tháng 10 2021

Dễ thấy nếu \(A\cap B=\varnothing\Rightarrow A\in[-3;3)\Rightarrow\left\{{}\begin{matrix}m-1\ge-3\\\dfrac{m+3}{2}< 3\end{matrix}\right.\)

                                                               \(\Leftrightarrow-2\le m< 3\)

Do đó để \(A\cap B\ne\varnothing\Rightarrow m\notin[-2;3)\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge3\end{matrix}\right.\)

 

10 tháng 11 2023

loading...