K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

1.\(\frac{1}{a}=\frac{1}{6}+\frac{b}{3}=\frac{1}{6}+\frac{2b}{6}=2b+\frac{1}{6}=\frac{1}{a}\Rightarrow(2b+1)\cdot a=6=2b\cdot a+a=6=3a\cdot b=6\)

\(a\cdot b=\frac{6}{a}\)

\(3\cdot2\cdot b=6\Rightarrow a=2;b=1\)

2. \(\frac{a}{4}-\frac{1}{b}=\frac{3}{4}\)hay \(\frac{a}{4}-\frac{3}{4}=\frac{1}{b}=a-\frac{3}{4}=\frac{1}{b}=>(a-3)\cdot6=4\)

\(6a-18=4\)

\(6a=4+18=22\)

\(=>A\in\varnothing\)

Đúng nhé bạn

24 tháng 6 2016
a) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)  

Ta có: 1/2 - (1/3 + 1/4) = 1/2 - 7/12 = -1/12 ;

           1/48 - (1/16 - 1/6) = 1/48 + 5/48 = 1/8

Vì \(-\frac{1}{12}< x< \frac{1}{8}\) nên x = 0

b) \(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(-21\frac{2}{3}\right)\)

Ta có :

\(4\frac{5}{9}:2\frac{5}{18}-7=2-7=-5\)

\(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(-21\frac{2}{3}\right)=\left(1+\frac{38}{5}\right):\left(-21\frac{2}{3}\right)=\frac{43}{5}:\frac{-65}{3}=-\frac{129}{325}\)

Vì \(-5< x< -\frac{129}{325}\) nên \(x\in\left\{-4;-3;-2;-1\right\}\)

17 tháng 8 2017

a)Ta có: 1/2-(1/3+1/4)= -1/12

           1/48-(1/16-1/6)=1/8

suy ra: -1/12<x<1/8

<=> -2/24<x<3/24

=>x thuộc:(-1/24 ;0 ;1/24 ;2/24 ;3/24)

17 tháng 8 2017

x thuộc Z nhé các bạn

28 tháng 6 2016

1/a = b/2+3/4  <=> 1/a = (2b+3)/4

=> 4= a(2b+3)

=> a, 2b+3 thuộc ước của 4

Mà 2b+3 là số lẻ và 2b+3 thuộc Z => 2b+3=+-1

Nếu 2b+3=1 thì b=-1 và a=4

Nếu 2b+3=-1 thì b=-2 và a=-4

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)