\(a,b,c\in Q,tm:\hept{\begin{cases}ac-a-c=15\\ab-a-b=8\\bc-b-c=24\end{cases}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Trừ vế theo vế lần lượt pt 1 cho pt 2, pt 2 cho pt 3 và pt 1 cho pt 3 ta được hệ mới : 

\(\hept{\begin{cases}ac-ab-c+b=7\\ab-bc-a+c=-16\\ac-bc-a+b=-9\end{cases}}\) 

Bạn tiếp tục trừ vế theo vế như ban đầu thì ra kết quả nha. 

Có j cần thì tối mk viết cụ thể cho. 

2 tháng 8 2017

bn có thể kb với mk đc ko

avt616014_60by60.jpgTrần Thị Hảo

19 tháng 9 2016

\(\frac{b+c}{4}=a\) => 4a = b + c => c = 4a - b (1)

\(\frac{a+c}{2}=b\) => 2b = a + c => c = 2b - a (2)

Lại có: a + b - 1 = c (3)

Từ (1); (2) => c = 4a - b = 2b - a 

=> 4a + a = 2b + b

=> 5a = 3b

=> \(a=\frac{3}{5}b\)

Thay \(a=\frac{3}{5}b\) vào (1), (2) và (3) ta có: 

=> \(c=4.\frac{3}{5}.b-b=2b-\frac{3}{5}b=\frac{3}{5}b+b-1\)

=> \(c=\frac{12}{5}b-b=\frac{7}{5}b=\frac{8}{5}b-1\)

=> \(c=\frac{7}{5}b=\frac{8}{5}b-1\)

=> \(\frac{8}{5}b-1-\frac{7}{5}b=0\)

=> \(\frac{1}{5}b-1=0\)

=> \(\frac{1}{5}b=1\) => \(b=5\)

=> \(a=\frac{3}{5}.5=3\) và \(c=\frac{7}{5}.5=7\)

Vậy abc = 357

10 tháng 4 2018

B A M C 1 2

a,Ta có 402 =1600,242=576,322=1024

mà 1600 = 576+1024

hay 402=242+322

->Tam giác ABC vuông(pi-ta-go đảo)

b,Theo định lý pi-ta-go ta có 

MB2=AB2+AM2

hay MB2=242+72

->MB2=576+49

->MB=625 -> MB=25

Vì AM +MC =AC 

hay 7 +MC =32 

->MC=25

tam giác AMC cân tại M vì MB=MC 

->\(\widehat{C}=\widehat{CBM}\)

4 tháng 3 2018

Ta có 

(a+3c)+(a+2b)=8+9

\(\Rightarrow\)2a+2b+3c=17

\(\Rightarrow2\left(a+b+c\right)+c=17\)

+, Nếu a+b+c đạt max thì 2(a+b+c) đạt max\(\Rightarrow\)c đạt min\(\Rightarrow\)c=0

\(\Rightarrow\)GTLN a+b+c=8,5

Vậy...

+Nếu a+b+c đạt min thì 2(a+b+c) đạt min \(\Rightarrow\)c đạt max \(\Rightarrow\)c=17

\(\Rightarrow\)GTLN a+b+c =0

Vậy ....

4 tháng 5 2017

Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a\ge b\ge1\\c\ge d\ge1\end{cases}}\)

Theo đề bài thì \(\hept{\begin{cases}a+b=cd\\ab=c+d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\ge c\\ab\le2c\end{cases}}\)

\(\Rightarrow a+b\ge c\ge\frac{ab}{2}\)

\(\Rightarrow ab\le2\left(a+b\right)\le4a\)

\(\Rightarrow1\le b\le4\)

Tương tự ta cũng tìm được

\(1\le d\le4\)

Kết hợp lại rồi lập bảng chọn ra giá trị thỏa mãn là xong.

17 tháng 11 2016

\(\hept{\begin{cases}a\left(a+b+c\right)=-12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{cases}}\)

Cộng cả 3 phương trình với nhau vế theo vế được

\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=36\)

\(\Leftrightarrow\left(a+b+c\right)^2=36\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b+c\right)=6\\\left(a+b+c\right)=-6\end{cases}}\)

Với \(\left(a+b+c\right)=6\)thì

\(\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}\)

Với \(\left(a+b+c\right)=-6\)thì

\(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)

17 tháng 11 2016

Bài này cho vào Câu Hỏi Hay có quá ko :v