Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{1}{c}\Leftrightarrow c=\frac{ab}{a+b}\)
\(\Rightarrow c^2=\frac{a^2b^2}{\left(a+b\right)^2}\) thay vào A ta được :
\(A=\sqrt{a^2+b^2+\frac{a^2b^2}{\left(a+b\right)^2}}=\sqrt{\frac{a^2\left(a+b\right)^2+b^2\left(a+b\right)^2+a^2b^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{a^4+2a^3b+a^2b^2+a^2b^2+2ab^3+b^4+a^2b^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{a^4+b^4+a^2b^2+2a^3b+2ab^3+2a^2b^2}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+ab\right)^2}{\left(a+b\right)^2}}=\frac{a^2+b^2+ab}{a+b}\in Q\forall a;b;c\in Q^+\)(dpcm)
TA có \(\frac{2}{b}=\frac{1}{a}+\frac{1}{b}\)
=>\(\frac{2}{b}-\frac{1}{b}=\frac{1}{a}\)
=>\(\frac{1}{b}=\frac{1}{a}\)
=>\(a=b\)thay vào P:
\(P=\frac{a+b}{2a-b}+\frac{c+d}{2c-b}\)
=>\(P=\frac{2a}{a}+\frac{2c}{c}\)
=>\(P=4\)
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Theo bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\ge\frac{9}{a+b+c}-\frac{4}{a+b+c}\)\(=\frac{5}{a+b+c}\ne0\)\(\Rightarrowđpcm\)
k cho minh nha
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\Leftrightarrow\frac{1}{a+1}=\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)\Leftrightarrow\frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}\)
Tương tự: \(\frac{1}{b+1}=\frac{a}{a+1}+\frac{c}{c+1}\); \(\frac{1}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}\)
Áp dụng bất đẳng thức Cosi, ta có : \(\frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)(1)
Tương tự : \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\) (2) ; \(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)(3)
Nhân (1) , (2) , (3) theo vế được : \(\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\Leftrightarrow1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\)(đpcm)
\(\frac{1}{c+1}=1-\frac{1}{a+1}+1-\frac{1}{b+1}=\frac{a}{a+1}+\frac{b}{b+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)
sau đó bạn cmtt rồi nhân 3 vế lại là ok
Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1\)
Nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{42}{42}\)
Suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< =\frac{41}{42}\) ( đpcm )
ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
a. Ta có \(P=\frac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-2}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+2}-1\)
\(=\frac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{3a+3\sqrt{a}-3-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\)
b. Để \(\left|P\right|=2\Rightarrow\orbr{\begin{cases}P=2\\P=-2\end{cases}}\)
Với \(P=2\Rightarrow\sqrt{a}+1=2\sqrt{a}-2\Rightarrow\sqrt{a}=3\Rightarrow a=9\)
Với \(P=-2\Rightarrow\sqrt{a}+1=2-2\sqrt{a}\Rightarrow\sqrt{a}=\frac{1}{3}\Rightarrow a=\frac{1}{9}\)
c. Ta có \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Để \(P\in N\Rightarrow P\in Z\Rightarrow\sqrt{a}-1\in\left\{-2;-1;1;2\right\}\)
\(\sqrt{a}-1\) | \(-2\) | \(-1\) | \(1\) | \(2\) |
\(\sqrt{a}\) | \(-1\) | \(0\) | \(2\) | \(3\) |
\(a\) | \(0\) | \(4\) | \(9\) | |
\(\left(l\right)\) | \(\left(tm\right)\) | \(\left(tm\right)\) | \(\left(tm\right)\) |
Vậy \(x\in\left\{0;4;9\right\}\)thì \(P\in N\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\Leftrightarrow\frac{a+b+c}{abc}=0\)
\(\Rightarrow a+b+c=0\)
\(P=a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)⋮3\)