K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Giả sử:0<a<b<c

=>1/a>1/b>1/c

=>1/a+1/b+1/c<1/a+1/a+1/a

17/18<3/a

<=>51/54<51/17a=>54>17a

                                 3>a

Mà a thuộc N=>a={1;2}

Với a=1,ta có:1+1/b+1/c=17/18

                       1/b+1/c=-1/18

Mà b;c thuộc N=>1/b+1/c ko thể là số nguyên âm(loại)

Với a=2.Ta có:1/2+1/b+1/c=17/18

                       1/b+1/c=17/18 - 1/2=4/9

Vì 1/b>1/c nên :1/b+1/b>4/9

                         <=>2/b>4/9

                              4/2b>4/9

=>2b<9=>b<4=>b={1;2;3;4}(1)

Mà 1/b+1/c=4/9=>1/b<4/9

                            <=>4/4b<4/9=>4b>9=>b>2(2)

Từ (1) và(2)=>b={3;4}

Với b=3.Ta có:1/3+1/c=4/9

   =>c=9

Với b=4.Ta có:1/4+1/c=4/9

=>c=36/7(loại)

Vậy a=2;b=3;c=9

2 tháng 5 2019

tk mk đi!

12 tháng 5 2018

\(A=\frac{17^{18}+1}{17^{19}+1}\)

\(17A=\frac{17^{19}+17}{17^{19}+1}=\frac{\left(17^{19}+1\right)+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)

\(B=\frac{17^{17}+1}{17^{18}+1}\)

\(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{\left(17^{18}+1\right)+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)

\(\text{Vì}\)\(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)

\(\Leftrightarrow17A< 17B\)

\(\Leftrightarrow A< B\)

12 tháng 5 2018

Trả lời

\(17A=\frac{\left(17^{18}+1\right)17}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)

\(17B=\frac{\left(17^{17}+1\right)17}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)

Vì \(17^{19}+1>17^{18}+1\)

\(\Rightarrow\frac{16}{17^{18}+1}>\frac{16}{17^{19}+1}\)

\(\Rightarrow1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\)

\(\Rightarrow B>A\)

12 tháng 5 2019

a) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}\)

\(A< 1-\frac{1}{45}< 1\)

\(A< 1\)

28 tháng 2 2017

Ta có :

\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

Vậy \(a=1;b=2;c=3;d=4\)

28 tháng 2 2017

Ta có: \(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

\(\Rightarrow\)a = 1 ; b  = 2 ; c = 3 ; d = 4

Vậy: 

a = 1 ; b  = 2 ; c = 3 ; d = 4

13 tháng 8 2017

Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)

2.a.x/7+1/14=(-1)/y

<=>2x/14+1/14=(-1)/y

<=>2x+1/14=(-1)/y

=>(2x+1).y=14.(-1)

<=>(2x+1).y=(-14)

(2x+1) và y là cặp ước của (-14).

(-14)=(-1).14=(-14).1

Ta có bảng giá trị:

2x+1-1141-14
2x-2130-15
x-113/20-15/2
y14-1-141
Đánh giáchọnloạichọnloại

Vậy(x,y) thuộc{(-1;14);(0;-14)}

b.x/9+-1/6=-1/y

<=>2x/9+-3/18=-1/y

<=>2x+(-3)/18=-1/y

=>[2x+(-3)].y=-1.18

<=>(2x-3).y=-18

(2x-3) và y là cặp ước của -18

-18=-1.18=-18.1

Ta có bảng giá trị:

2x-3-1181-18
2x2214-15
x121/22-15/2
y18-1-181
Đánh giáchọnloạichọnloại

Vậy(x;y) thuộc{(1;18);(4;-18)}

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

31 tháng 7 2016

Có: \(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

=>a=1; b=2 ; c=3 ; d=4

31 tháng 7 2016

\(\frac{30}{43}=\frac{1}{\frac{43}{30}}\)

     \(=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)

     \(=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

Vậy a = 1 ; b = 2 ; c = 3 ; d = 4