\(⋮\)(ax2+bx +c)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

a/ \(4x^4+81=\left(4x^4+36x^2+81\right)-36x^2\)

\(=\left(2x^2+9\right)^2-36x^2=\left(2x^2+6x+9\right)\left(2x^2-6x+9\right)\)

Để \(\left(4x^4+81\right)⋮\left(ax^2+bx+c\right)\)thì

\(\left[{}\begin{matrix}ax^2+bx+c\equiv2x^2+6x+9\\ax^2+bx+c\equiv2x^2-6x+9\end{matrix}\right.\)

Giờ suy ra được a, b, c

25 tháng 10 2017

Câu b chỉ cần thực hiện phép chia đa thức rồi cho sô dư bằng 8 là xong

12 tháng 11 2018

a. Thực hiện phép chia,ta được :

\(\left(x^4+ax^2+1\right):\left(x^2+x+1\right)=\left(x^2-x+a\right)\text{dư}\left(1-a\right)x+\left(b-a\right)\)

muốn chia hết thì đa thức dư phải đồng nhất bằng 0, tức là :

\(\left\{{}\begin{matrix}1-a=0\\b-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Vậy ...

27 tháng 10 2017

đơn giản

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....

23 tháng 12 2019

Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?

8 tháng 8 2019

a,gọi f(x)=x3+ax+b

theo đb có: f(x)=(x+1)t(x)+7

=> f(-1)=7=> -1-a+b=7<=>b-a=8(1)

f(x)=(x-3)h(x)-3=> f(3)=-3=> 27+3a+b=3<=> 3a+b=-24(2)

từ (1);(2)=> a=-8;b=0

10 tháng 9 2016

có gì pm

buồn ngủ