Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(abc\right)^2=\dfrac{3}{5}\cdot\dfrac{4}{5}\cdot\dfrac{3}{4}=\dfrac{9}{25}\)
Trường hợp 1: \(abc=\dfrac{3}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\end{matrix}\right.\)
Trường hợp 2: \(abc=\dfrac{-3}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\b=\dfrac{3}{5}:\dfrac{-3}{4}=\dfrac{-4}{5}\\a=\dfrac{3}{5}:\dfrac{-4}{5}=\dfrac{-3}{4}\end{matrix}\right.\)
Từ \(\frac{a}{2}=\frac{b}{3}=\frac{a}{2}.\frac{1}{5}=\frac{b}{3}.\frac{1}{5}=\frac{a}{10}=\frac{b}{15}\)( 1 )
Từ \(\frac{b}{5}=\frac{c}{4}=\frac{b}{5}.\frac{1}{3}=\frac{c}{4}.\frac{1}{3}=\frac{b}{15}=\frac{c}{12}\)( 2 )
Từ (1) và (2) suy ra : \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=3\\\frac{b}{15}=3\\\frac{c}{12}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=30\\b=45\\c=36\end{cases}}\)
Ta có:
\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\) và \(y-x=5\)
Áp dụng tính chất của dạy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)
\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)
Vậy \(x=20;y=25\)
b)
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)
\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)
Vậy \(a=10,5;b=14;c=17,5\)
Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)
thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15
Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)
=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)
\(\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{10}=\dfrac{b}{15}\)
\(\dfrac{b}{5}=\dfrac{c}{4}\Rightarrow\dfrac{b}{15}=\dfrac{c}{12}\)
\(\Rightarrow\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{21}{7}=3\)
\(\dfrac{a}{10}=3\Rightarrow a=30\\ \dfrac{b}{15}=3\Rightarrow b=45\\ \dfrac{c}{12}=3\Rightarrow c=36\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
Do đó: a=18; b=12; c=9
ta có:
a + b - c = 21
=> a/2 = b/3 = c/4 = a + b - c/ 2 + 3 - 4 = 21/1 = 21
<=> a = 21.2 = 42
<=> b = 21.3 = 63
<=> c = 21.4 = 84.
\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{8}=\frac{b}{12},\frac{b}{4}=\frac{c}{5}\Leftrightarrow\frac{b}{12}=\frac{c}{15}\)
suy ra \(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{35}=0,6\)
\(\Leftrightarrow\hept{\begin{cases}a=0,6.8=4,8\\b=0,6.12=7,2\\c=0,6.15=9\end{cases}}\)