K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Ta có: \(3a=7b\Rightarrow\dfrac{a}{7}=\dfrac{b}{3}\)

\(4b=3c\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\)

Khi đó: \(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a}{7}=\dfrac{4b}{12}=\dfrac{5c}{20}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{7}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{7+12-20}=\dfrac{-30}{-1}=30\)

Do \(\left\{{}\begin{matrix}\dfrac{a}{7}=30\\\dfrac{4b}{12}=30\\\dfrac{5c}{20}=30\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=210\\b=90\\c=120\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=210\\b=90\\c=120\end{matrix}\right.\).

23 tháng 6 2017

Từ đề ta có: \(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{c}{4}\)

Áp dụng t/c của dãy tỉ số = nhau ta có:

\(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{7+12-20}=\dfrac{-30}{-1}=30\)

\(\Rightarrow\left\{{}\begin{matrix}a=30\cdot7\\b=30\cdot3\\c=30\cdot4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=210\\b=90\\c=120\end{matrix}\right.\)

Vậy..........

26 tháng 5 2021

a/ \(3a=2b;4b=3c\)

=> \(6a=4b=3c\)

=> \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{2+12-20}=\dfrac{-30}{-6}=5\)

=> \(\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)

=> B

26 tháng 5 2021

B

3 tháng 8 2020

\(a=\frac{5}{3}b\)\(c=\frac{5}{6}b\)

\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)

\(\Leftrightarrow\frac{-5}{6}b=10\)

\(\Leftrightarrow b=-12\)

b, Tương tự

3 tháng 8 2020

Bài làm:

a) \(3a=5b=6c\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)

b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)

và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)

17 tháng 3 2020

a, \(a\div b\div c\div d=15\div7\div3\div1\)\(a-b+c-d\) = 20 ( bạn thiếu đề nên mình cho đại)

\(a\div b\div c\div d=15\div7\div3\div1\Rightarrow\frac{a}{15}=\frac{b}{7}=\frac{c}{3}=\frac{d}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{15}=\frac{b}{7}=\frac{c}{3}=\frac{d}{1}=\frac{a-b+c-d}{15-7+3-1}=\frac{20}{10}=2\)

Do đó

\(\frac{a}{15}=2\Rightarrow a=2.15=30\)

\(\frac{b}{7}=2\Rightarrow b=2.7=14\)

\(\frac{c}{3}=2\Rightarrow c=2.3=6\)

\(\frac{d}{1}=2\Rightarrow d=2.1=2\)

Vậy ......

b, 2a = 3b ; 5b = 7c và 3a + 5c - 7b = 30

Có 2a = 3b \(\Leftrightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{1}{7}.\frac{a}{3}=\frac{1}{7}.\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right)\)

5b = 7c \(\Leftrightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{1}{2}.\frac{b}{7}=\frac{1}{2}.\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\left(2\right)\)

Từ (1) và (2 ) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Leftrightarrow\frac{3a}{63}=\frac{5c}{70}=\frac{7b}{70}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3a}{63}=\frac{5c}{70}=\frac{7b}{70}=\frac{3a+5c-7b}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)

Do đó :

\(\frac{3a}{63}=\frac{10}{21}\Leftrightarrow\frac{a}{21}=\frac{10}{21}\Rightarrow a=\frac{21.10}{21}=10\)

\(\frac{5c}{70}=\frac{10}{21}\Leftrightarrow\frac{c}{14}=\frac{10}{21}\Rightarrow c=\frac{14.10}{21}=\frac{140}{21}=\frac{20}{3}\)

\(\frac{7b}{70}=\frac{10}{21}\Leftrightarrow\frac{b}{10}=\frac{10}{21}\Rightarrow b=\frac{10.10}{21}=\frac{100}{21}\)

Vậy .......

c,3a=4b và b - a = 5

Có 3a = 4b \(\Rightarrow\frac{a}{4}=\frac{b}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{4}=\frac{b}{3}=\frac{b-a}{3-4}=\frac{5}{-1}=-5\)

Do đó :

\(\frac{a}{4}=-5\Rightarrow a=-5.4=-20\)

\(\frac{b}{3}=-5\Rightarrow b=-5.3=-15\)

Vậy ........................

1 tháng 2 2017

\(3a=4b=5c=\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}\)

Áp dụng TC DTSBN ta có :

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{94}{\frac{47}{60}}=120\)

=> a = 40 ; b = 30 ; c = 24

11 tháng 8 2016

Ta có: 3a=2b=\(\frac{a}{2}=\frac{b}{3}\)và 4b=5c=\(\frac{b}{5}=\frac{c}{4}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{52}{13}=4\)

\(\frac{a}{10}=4\Rightarrow a=10.4=40\)

\(\frac{b}{15}=4\Rightarrow b=15.4=60\)

\(\frac{c}{12}=4\Rightarrow c=12.4=48\)

12 tháng 10 2016

a = 40 b = 60 c = 48

10 tháng 8 2016

Có: \(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)

      \(4b=5c\Rightarrow\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)

=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)

=>\(\frac{a}{10}=4\Rightarrow a=40\)

     \(\frac{b}{15}=4\Rightarrow b=60\)

     \(\frac{c}{12}=4\Rightarrow c=48\)

10 tháng 8 2016

ta có : \(\begin{cases}3a=2b\\4b=5c\end{cases}\)<=>\(\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\)<=>\(\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\)

=->\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

=> \(\frac{-a-b+c}{-10-15+12}=-\frac{52}{13}=-4\)

=>\(\frac{a}{10}=-4\)=> a=-40

\(\frac{b}{15}=-4\)=>b=-60

\(\frac{c}{12}=-4\)=> c=-48