Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Gọi 3 số nguyên liên tiếp là n-1 , n . n+1
(n-1)3 +n3+(n+1)3
= n3 - 3n2+3n -1 + n3 + n3 +3n2 +3n +1
= 3n3 + 6n
= 3n3- 3n + 9n
= 3 (n3-n) + 9n chia hết cho 9
2)
Có a3+b3+c3 chia hết cho 9 (1)
Giả sử a,b,c đều ko chia hết cho 3 (BS3\(\pm1\))
\(\Rightarrow\) lập phương mỗi số dạng BS9 \(\pm1\)
\(\Rightarrow a^3+b^{3^{ }}+c^3=BS9+r_1+r_2+r_3\)
Có r1,r2,r3 \(\in\left(1;-1\right)\)
Không có cách nào để r1,r2,r3 nào để tổng chia hết cho 9 trái với (1)
Vậy tồn tại 1 trong 3 số a,b,c là bội của 3
504 = 32 . 7 . 8 . đặt n = a3
Ta cần chứng minh A = ( a3 - 1 ) a3 ( a3 + 1 ) chia hết cho 504
Nếu a chẵn thì a3 chia hết cho 8 ; nếu a lẻ thì a3 - 1 và a3 + 1 là 2 số chẵn liên tiếp nên ( a3 - 1 ) ( a3 + 1 ) chia hết cho 8
Do đó A chia hết cho 8
Nếu a chia hết cho 7 thì A chia hết cho 7 . Nếu a không chia hết cho 7 thì a6 - 1 chia hết cho 7
Nếu a chia hết cho 3 thi a3 chia hết cho 9 . nếu a = 3k \(\mp\)1 thì a3 = BS9 \(\mp\)1 nên a3 - 1 hoặc a3 + 1 chia hết cho 9
Do đó : A chia hết cho 9
Nếu a ko chia hết cho 7 thì tại sao a^6 -1 chia hết cho 7 ??????
\(f\left(x\right)=x^3+2ax+b\)
Vì \(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)\(\Leftrightarrow1+2a+b=0\)\(\Leftrightarrow2a+b=-1\)(1)
Vì \(f\left(x\right)\)chia \(x+2\)dư \(3\) \(\Rightarrow f\left(-2\right)=3\)
\(\Leftrightarrow-8-4a+b=3\Leftrightarrow-4a+b=11\Leftrightarrow4a-b=-11\)(2)
Cộng (1) với (2) ta được \(2a+b+4a-b=6a=-1-11=-12\)\(\Rightarrow a=-2\)
\(\Rightarrow b=3\)
Vậy \(a=-2;b=3\)
Tìm a,b,c biết số 11a8b1987c chia hết cho 504.
Cách giải 1 (Toán kết hợp với máy tính) Vì 504 = 7 x 8 x 9 nên để 11a8b1987c chia hết cho 8 thì ba số tận cùng 87c phải chia hết cho 8. Vì 87c = 800 + 7c nên để 87c chia hết cho 8 thì c chỉ có thể bằng 2. Số cần tìm có dạng 11a8b19872.
Để số đã cho chia hết cho 9 thì: 37+a+b = 36 +1 + a + b phải chia hết cho 9, tức là a + b + 1=9 hoặc a + b + 1 = 18. Suy ra : a + b = 8 hoặc a + b = 17.
Thử tất cả các trường hợp trên máy tính ta có các kết quả sau :
Cách giải 2 (Suy luận toán học) Ta có:
Như vậy, để số đã cho chia hết cho 7 thì 3a-2b+1 phải chia hết cho 7. Vì 3a-2b+1<=3a+1<=28 nên 3a-2b+1 chỉ có thể bằng một trong các số: 0, 7, 14, 21, 28.
Vì số đã cho đồng thời phải chia hết cho 9 nên a và b đồng thời phải thỏa mãn hai điều kiện: a + b = 17 hoặc a + b = 8 và 3a -2b +1 bằng một trong các số: 0, 7, 14, 21, 28.
Trường hợp 1 3a -2b +1 Từ điều kiện a+b=8 ta được a=3,b=5
Trường hợp 2 Hệ 3a -2b +1 =7 và a+b=8 không có nghiệm nguyên.
Trường hợp 3 Hệ 3a -2b +1 = 14 và a+b=8 không có nghiệm nguyên.
Trường hợp 4 Hệ 3a -2b +1=21 và a+b=8 không có nghiệm nguyên.
Trường hợp 5 Hệ 3a -2b +1=28 và a+b=8 không có nghiệm nguyên.
Trường hợp 6 Hệ 3a -2b +1=0 và a+b=17 không có nghiệm nguyên.
Trường hợp 7 Hệ 3a -2b +1=7 và a+b=17 có nghiệm a=8, b=9.
Trường hợp 8 Hệ 3a -2b +1=14 và a+b=17 không có nghiệm nguyên.
Trường hợp 9 Hệ 3a -2b +1=21 và a+b=17 không có nghiệm nguyên.
Trường hợp 10 Hệ 3a -2b +1=28 và a+b=17 không có nghiệm nguyên.
Đáp số: Số cần tìm là 1138519872 và 1188919872 .