Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Leftrightarrow100\times\overline{ab}+\overline{bc}=7\times\overline{ab}\times\overline{ac}\)
\(\Leftrightarrow\overline{ab}\times\left(7\times\overline{ac}-100\right)=\overline{bc}\)
\(7\times\overline{ac}-100=\frac{\overline{bc}}{\overline{ab}}\)
Vì \(0< \frac{\overline{bc}}{\overline{ab}}< 10\Rightarrow0< 7\times\overline{ac}-100< 10\)
\(\Rightarrow100< 7\times\overline{ac}< 110\)
\(14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\)
\(\Rightarrow\overline{ac}=15\Rightarrow\overline{a}=1,\overline{c}=5\)
Thay \(\overline{ac}=15\)ta được: \(\overline{1bb5}=15\times\overline{1b}\times7\)
\(\Rightarrow5\times\overline{b}=45\Rightarrow\overline{b}=\frac{45}{5}=9\)
Vậy \(a=1,b=9,c=5\ne0\left(tm\right)\)
Ta có:
\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)
\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)
\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)
\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)
\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)
\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)
Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow b^2=a.c\)
Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)
+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)
+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)
+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)
+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)
Vậy abc = 139
Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)
\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)
\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)
\(\Rightarrow10ac+bc=10b^2+bc\)
\(\Rightarrow10ac=10b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)
abbc=100.ab+bc
ab.ac.7-100.ab=bc
ab.(ac.7-100)=bc
⇒⇒ ac.7-100 < 10
⇒⇒ ac<16
⇒⇒ a=1
Ma ac.7-100=1c.7-100=c.7+70-100=c.7-30<10
⇒⇒ c.7<40
⇒⇒ c<6
va c.7-30>0
⇒⇒ c.7 >30
⇒⇒ c>4
⇒⇒ c=5
Ma 1c.7-100=15.7-100=5
⇒⇒ ab.5=bc
Hay 1b.5=b5
⇒⇒ 50+5b=10.b+5
⇒⇒ 5.b=45
⇒⇒ b=9
Vay a=1;b=9;c=5