\(\frac{a}{2014}=\frac{b}{3}=\frac{c}{2}\)và 2015b - 2016c - a = -1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

Ta co : \(\frac{a}{2014}=\frac{b}{3}=\frac{c}{2}\Rightarrow\frac{a}{2014}=\frac{2015b}{6045}=\frac{2016c}{4032}\) va 2015b-2016b-a=-1

Ap dung tinh chat day ti so bang nhau : 

\(\frac{2015b}{6045}=\frac{2016c}{4032}=\frac{a}{2014}=\frac{2015b-2016b-a}{6045-4032-2014}=-\frac{1}{-1}=1\)

Suy ra : \(\frac{2015b}{6045}=1\Rightarrow b=1.6045:2015=3\)

\(\frac{2016c}{4032}=1\Rightarrow c=1.4032:2016=2\)

\(\frac{a}{2014}=1\Rightarrow a=1.2014=2014\)

**** nhe

 

18 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

a) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)

\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)

b) Ta có:

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015.\left(bk\right)^2+2016.\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015.b^2.k^2+2016.d^2.k^2}{2015.b^2+2016.d^2}=\frac{k^2.\left(2015.b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\) Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)

 

 

27 tháng 8 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) =>\(a=bk\); \(c=dk\)

Thay \(a=bk\);\(c=dk\)vào biểu thức \(\frac{ac}{bd}\)ta được:

\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{k^2bd}{bd}=k^2\left(1\right)\)

Thay \(a=bk\); \(c=dk\)vào biểu thức \(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015\left(bk\right)^2+2016\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015b^2k^2+2016d^2k^2}{2015b^2+2016d^2}=\frac{k^2\left(2015b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\)

Từ (1)(2)

=>\(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

31 tháng 12 2016

Công dãy lại => hệ số : \(k=2014\)

Cách đơn giảii không hiệu quả, Thế lại=> a,b,c thay vào ra A

8 tháng 1 2017

với a+b+c khác 0 

=> A=a/b+c =b/a+c = c/b+a = a+b+c/b+c+a+c+b+a = a+b+c/2.(a+b+c) =1/2

=> A=1/2

với a+b+c =0

=>a+b= -c

b+c= -a

a+c= -b

thay vào A ta được :

=>A= a/-a = b/-b = c/-c=-1

=>A= -1

vậy A= -1 hoặc 1/2

8 tháng 1 2017

1)a,b,c có khác 0 không bạn

nếu khác 0 thì tớ mới làm được

22 tháng 12 2016

+ Nếu a+b+c=0 => a+b=-c; a+c=-b; b+c=-a

A = (1 + a/b)(1 + b/c)(1 + c/a)

A = a+b/b . (b+c/c) . (c+a/a)

A = -c/b . (-a/c) . (-b/a)

A = -1

+ Nếu a+b+c khác 0

Áp dụng t/c của dãy tỉ số = nhau ta có:

2016c-b-a/c = 2016b-a-c/b = 2016a-b-c/a

= (2016c-b-a)+(2016b-a-c)+(2016a-b-c)/a+b+c

= 2015(a+b+c)/a+b+c = 2015

=> 2015c = 2016c-b-a; 2015b=2016b-a-c; 2015a = 2016a-b-c

=> c-b-a=0; b-a-c=0; a-b-c=0

=> c=a+b; b=a+c; a=b+c

A = a+b/b . (b+c/c) . (c+a/a)

A = c/b . a/c . b/a = 1

16 tháng 12 2017

ADTCCDTSBN,TC :

\(\frac{2016c-a-b}{c}=\frac{2016b-a-c}{b}=\frac{2016a-b-c}{a}\)

\(=\frac{\left(2016c-a-b\right)+\left(2016b-a-c\right)+\left(2016a-b-c\right)}{c+b+a}=\frac{2014.\left(a+b+c\right)}{a+b+c}=2014\)

\(\frac{2016c-a-b}{c}=2014\Rightarrow2016c-a-b=2014c\Rightarrow2c=a+b\)( 1 )

\(\frac{2016b-a-c}{b}=2014\Rightarrow2016b-a-c=2014b\Rightarrow2b=a+c\)( 2 )

\(\frac{2016a-b-c}{a}=2014\Rightarrow2016a-b-c=2014a\Rightarrow2a=b+c\)( 3 )

Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow\)a = b = c

\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)+\left(1+1\right)=2^3=8\)