\(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Cho hình bình hành ABCD,Đường phân giác góc D cắt AB tại M,Chứng minh AM = AD,Đường phân giác góc B cắt CD tại N,Chứng minh tứ giác MBND là hình bình hành,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

ko chi tiết lắm

26 tháng 8 2017

(d) qua A(5; 6) : y = mx - 5m + 6 (1) 
(C) : (x - 1)² + (y - 2)² = 1 (2) 
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C) 
(x - 1)² + (mx - 5m + 4)² = 1 
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*) 
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép 
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2 
KL : Có 2 đường thẳng cần tìm 
(d1) : y = (3/2)(x - 1) 
(d2) : y = 2x - 4 

∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★

31 tháng 12 2015

tick hộ rồi giải cho

31 tháng 12 2015

các bạn tick tôi cho được vào top 100 cái nha bạn nào tick sẽ có nhiều may mắn đến năm mới

25 tháng 10 2020

 Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge2\sqrt{\frac{1}{a^2}}.2\sqrt{\frac{2}{b^2}}.2\sqrt{\frac{8}{c^2}}=8.\sqrt{16}.\frac{1}{abc}=\frac{32}{abc}\)

Dấu "=" xảy ra khi và chỉ khi ...

25 tháng 10 2020

Áp dụng bất đẳng thức cô -si cho 2 số dương , ta có :

\(\hept{\begin{cases}\frac{1}{a^2}+1\ge2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\\\frac{1}{b^2}+2\ge2\sqrt{\frac{1}{b^2}.2}=\frac{2\sqrt{2}}{b}\\\frac{1}{c^2}+8\ge2\sqrt{\frac{1}{c^2}.8}=\frac{4\sqrt{2}}{c}\end{cases}}\)

Nhân vế với vế ts có :

\(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge\frac{32}{abc}\left(đpcm\right)\)

18 tháng 9 2021

Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)

Áp dụng bđt cosi ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+2\right)}+\frac{b+1}{12}+\frac{c+2}{18}\ge3\sqrt[3]{\frac{a^3}{12.18}}=\frac{a}{2}\)

Làm tương tự

=>\(VT+\left(\frac{a+1}{12}+\frac{a+2}{18}\right)+\left(\frac{b+1}{12}+\frac{b+2}{18}\right)+\left(\frac{c+1}{12}+\frac{c+2}{18}\right)\ge\frac{a+b+c}{2}\)

=> \(VT\ge\frac{13}{36}.\left(a+b+c\right)-\frac{7}{12}\ge\frac{13}{36}.3-\frac{7}{12}=\frac{1}{2}\)(ĐPCM)

21 tháng 9 2021

dấu suy ra thứ 2 phải là lớn hơn hoặc bằng 8(a+b+c)/36-7/12 chứ

23 tháng 2 2022

Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.

Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:

\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)

Do đó ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)

\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)

\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)

Do đó ta được:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)

Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).

3 tháng 3 2019

Ta có \(VT=a^2+b^2+c^2+2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

  \(\Leftrightarrow VT=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab^2+bc^2+ca^2\right)\) (Vì abc=1)

ÁP dụng bđt Cô-si cho 3 số dương, ta có:\(a^2+\frac{1}{b^2}+ab^2\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)

\(b^2+\frac{1}{c^2}+bc^2\ge3b\)            \(c^2+\frac{1}{a^2}+ca^2\ge3c\)

\(\Rightarrow VT\ge3\left(a+b+c\right)+\left(ab^2+bc^2+ca^2\right)\ge3\left(a+b+c\right)+3\sqrt[3]{a^3b^3c^3}=3\left(a+b+c+1\right)\)     Vì abc=1. Dấu bằng xảy ra khi a=b=c=1

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)