K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

Đề bài ???


 

12 tháng 2 2019

viết nhầm

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá 

3 tháng 8 2020

Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)

\(\Rightarrow\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)

\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2002k-2003k\right)\left(2003k-2004k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)

\(VP=\left(c-a\right)^2=\left(2004k-2002k\right)^2=\left(2k\right)^2=4k^2\)

\(\Rightarrow VT=VP\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
 

3 tháng 8 2020

4) Ta có :\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}=\frac{a+b+c+1-1+2}{2+3+4}=\frac{a+b+c+2}{9}\)(1)

=> 2a + 5 = 9

=> 2a = 4

=> a = 2

Thay a vào (1) ta có : 

\(\frac{b-1}{3}=\frac{c+2}{4}=\frac{3}{2}\)

=> \(\hept{\begin{cases}\frac{b-1}{3}=\frac{3}{2}\\\frac{c+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2\left(b-1\right)=9\\2\left(c+2\right)=12\end{cases}}\Rightarrow\hept{\begin{cases}2b-2=9\\2c+4=12\end{cases}}\Rightarrow\hept{\begin{cases}2b=11\\2c=8\end{cases}\Rightarrow\hept{\begin{cases}b=5,5\\c=4\end{cases}}}\)

Vậy a = 2 ; b = 5,5 ; c = 4

5) Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)

=> \(\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)

4(a - b)(b - c) = (c - a)2

=> 4(2002k - 2003k)(2003k - 2004k) = (2002k - 2004k)2

=> 4(-k)(-k) = (-2k)2

=> (-2)2(-k)2 = (-2k)2

=> 22k2 = (2k)2

=> (2k)2 = (2k)2

=> 4(a - b)(b - c) = (c - a)2 (đpcm)

9 tháng 8 2020

a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)

=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\) 

=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)

=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)

=> a = -2,4 ; b = -1,6 ; c = -0,9

b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)

=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)

=> \(\frac{a}{20}=\frac{b}{18}\)(1)

Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)

Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)

=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)

=>  a = -40 ; b = - 36 ; z = -30

9 tháng 8 2020

a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)

\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)

b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)

 \(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)

Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16

\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)

22 tháng 7 2019

1) Tìm số nguyên x, biết : 

a) 3= 94/ 273

3x = 1/3

3x = 3-1

=> x = -1

b) 3x = 98 / 273 . 812

3x = 37.38

3x = 315

=> x = 15

c) 2x - 3 / 410 = 83

2x - 3  = 83.410

2x - 3 = 226

=> x - 3 = 26

=> x = 29

d) 22x - 3 / 410 = 83 . 165

 22x - 3 / 410 = 269

 22x - 3 = 269 . 410

22x - 3 = 289

=> 2x - 3 = 89

2x = 91

x = 91/2

e) 35 / 3x = 310

3x = 3: 310

3x = 3-5

=> x = -5

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

24 tháng 7 2019

a, x : (-1/2)^3 = -1/2

=> x : (-1/8) = -1/2

=> x = 4

vậy_

b, (3/4)^5.x = (3/4)^7

=> x = (3/4)^7 : (3/4)^5

=> x = (3/4)^2

=> x = 9/16

vậy-

c, (3/5)^8 : x = (-3/5)^6

=> (3/5)^8 : x = (3/5)^6

=> x = (3/5)^8 : (3/5)^6

=> x = (3/5)^2

=> x= 9 /25