K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Theo đề bài : 2a =3b=5c và a+b+c=62

 Ta có  :\(\frac{2a}{30}\)\(\frac{3b}{30}\)=\(\frac{5c}{30}\)suy ra \(\frac{a}{15}\)=\(\frac{b}{10}\)=\(\frac{c}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

suy ra :\(\frac{a}{15}\)=\(\frac{b}{10}\)=\(\frac{c}{6}\)=\(\frac{a+b+c}{15+10+6}\)=\(\frac{62}{31}\)=2

suy ra :\(\frac{a}{15}\)= 2 suy ra a= 2 * 15=30

           \(\frac{b}{10}\)=2 suy ra b =2 * 10=20

            \(\frac{c}{6}\)=2 suy ra 2* 6= 12

Vậy a,b,c lần lượt là : 30 ,20, 12

6 tháng 10 2017

Ta co

\(2a=3b=5c\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\)

\(\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\Rightarrow\frac{a+b+c}{15+10+6}\)

Vi a + b + c = 62\(\Rightarrow\frac{a+b+c}{15+10+6}=\frac{62}{31}=2\)

\(\Rightarrow\frac{a}{15}=2\Rightarrow a=30\)

\(\Rightarrow\frac{b}{10}=2\Rightarrow b=20\)

\(\Rightarrow\frac{c}{6}=2\Rightarrow c=12\)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{2a}{a+b}=\dfrac{2bk}{bk+b}=\dfrac{2k}{k+1}\)

\(\dfrac{2c}{c+d}=\dfrac{2dk}{dk+d}=\dfrac{2k}{k+1}\)

Do đó: \(\dfrac{2a}{a+b}=\dfrac{2c}{c+d}\)

b: \(\dfrac{a-b}{2a+b}=\dfrac{bk-b}{2bk+b}=\dfrac{k-1}{2k+1}\)

\(\dfrac{c-d}{2c+d}=\dfrac{dk-d}{2dk+d}=\dfrac{k-1}{2k+1}\)

Do đó: \(\dfrac{a-b}{2a+b}=\dfrac{c-d}{2c+d}\)

c: \(\dfrac{a}{c}=\dfrac{bk}{dk}=\dfrac{b}{d}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a}{c}=\dfrac{a^2+b^2}{c^2+d^2}\)

hay \(\dfrac{a}{a^2+b^2}=\dfrac{c}{c^2+d^2}\)

9 tháng 7 2016

Từ: \(a^2\left(b+c\right)=b^2\left(a+c\right)\Leftrightarrow a^2b-ab^2+ca^2-cb^2=0\Leftrightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=0.\)

\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ac\right)=0\). Do \(a\ne b\Rightarrow ab+bc+ac=0\)(1)

Mặt khác, xét hiệu:

\(c^2\left(a+b\right)-a^2\left(b+c\right)=ac^2-a^2c+bc^2-a^2b=ac\left(c-a\right)+b\left(c-a\right)\left(c+a\right)=\)

\(=\left(c-a\right)\left(ac+bc+ab\right)=0\)

Do đó: \(H=c^2\left(a+b\right)=a^2\left(b+c\right)=2013.\)

1 tháng 4 2019

đề ko sai đâu bạn

14 tháng 2 2018

Bài 1 : 

\(a)\)Ta có : 

\(A=\frac{2.6^9-4^5.9^4}{20.6^8+2^{10}.3^8}\)

\(A=\frac{2.\left(2.3\right)^9-\left(2^2\right)^5.\left(3^2\right)^4}{\left(2^2.5\right).\left(2.3\right)^8+2^{10}.3^8}\)

\(A=\frac{2.2^9.3^9-2^{10}.3^8}{2^2.5.2^8.3^8+2^{10}.3^8}\)

\(A=\frac{2^{10}.3^9-2^{10}.3^8}{2^{10}.3^8.5+2^{10}.3^8}\)

\(A=\frac{2^{10}.3^8\left(3-1\right)}{2^{10}.3^8\left(5+1\right)}\)

\(A=\frac{2}{6}\)

\(A=\frac{1}{3}\)

Vậy \(A=\frac{1}{3}\)

Năm mới zui zẻ nhé ^^

14 tháng 2 2018

thanks