Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài : 2a =3b=5c và a+b+c=62
Ta có :\(\frac{2a}{30}\)= \(\frac{3b}{30}\)=\(\frac{5c}{30}\)suy ra \(\frac{a}{15}\)=\(\frac{b}{10}\)=\(\frac{c}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
suy ra :\(\frac{a}{15}\)=\(\frac{b}{10}\)=\(\frac{c}{6}\)=\(\frac{a+b+c}{15+10+6}\)=\(\frac{62}{31}\)=2
suy ra :\(\frac{a}{15}\)= 2 suy ra a= 2 * 15=30
\(\frac{b}{10}\)=2 suy ra b =2 * 10=20
\(\frac{c}{6}\)=2 suy ra 2* 6= 12
Vậy a,b,c lần lượt là : 30 ,20, 12
Ta co
\(2a=3b=5c\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\)
\(\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\Rightarrow\frac{a+b+c}{15+10+6}\)
Vi a + b + c = 62\(\Rightarrow\frac{a+b+c}{15+10+6}=\frac{62}{31}=2\)
\(\Rightarrow\frac{a}{15}=2\Rightarrow a=30\)
\(\Rightarrow\frac{b}{10}=2\Rightarrow b=20\)
\(\Rightarrow\frac{c}{6}=2\Rightarrow c=12\)
cho a/b=c/d
chứng minh :
2a/a+b=2c/c+a
a-b/2a+b=c-d/2c-d
a/a^2+b^2=c/c^2+d^2
a+b/a^2-b^2=c+d/c^2-d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a}{a+b}=\dfrac{2bk}{bk+b}=\dfrac{2k}{k+1}\)
\(\dfrac{2c}{c+d}=\dfrac{2dk}{dk+d}=\dfrac{2k}{k+1}\)
Do đó: \(\dfrac{2a}{a+b}=\dfrac{2c}{c+d}\)
b: \(\dfrac{a-b}{2a+b}=\dfrac{bk-b}{2bk+b}=\dfrac{k-1}{2k+1}\)
\(\dfrac{c-d}{2c+d}=\dfrac{dk-d}{2dk+d}=\dfrac{k-1}{2k+1}\)
Do đó: \(\dfrac{a-b}{2a+b}=\dfrac{c-d}{2c+d}\)
c: \(\dfrac{a}{c}=\dfrac{bk}{dk}=\dfrac{b}{d}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a}{c}=\dfrac{a^2+b^2}{c^2+d^2}\)
hay \(\dfrac{a}{a^2+b^2}=\dfrac{c}{c^2+d^2}\)
Từ: \(a^2\left(b+c\right)=b^2\left(a+c\right)\Leftrightarrow a^2b-ab^2+ca^2-cb^2=0\Leftrightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=0.\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ac\right)=0\). Do \(a\ne b\Rightarrow ab+bc+ac=0\)(1)
Mặt khác, xét hiệu:
\(c^2\left(a+b\right)-a^2\left(b+c\right)=ac^2-a^2c+bc^2-a^2b=ac\left(c-a\right)+b\left(c-a\right)\left(c+a\right)=\)
\(=\left(c-a\right)\left(ac+bc+ab\right)=0\)
Do đó: \(H=c^2\left(a+b\right)=a^2\left(b+c\right)=2013.\)
Bài 1 :
\(a)\)Ta có :
\(A=\frac{2.6^9-4^5.9^4}{20.6^8+2^{10}.3^8}\)
\(A=\frac{2.\left(2.3\right)^9-\left(2^2\right)^5.\left(3^2\right)^4}{\left(2^2.5\right).\left(2.3\right)^8+2^{10}.3^8}\)
\(A=\frac{2.2^9.3^9-2^{10}.3^8}{2^2.5.2^8.3^8+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^9-2^{10}.3^8}{2^{10}.3^8.5+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^8\left(3-1\right)}{2^{10}.3^8\left(5+1\right)}\)
\(A=\frac{2}{6}\)
\(A=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
Năm mới zui zẻ nhé ^^