K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

a. \(A=\left[\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)

\(=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)

\(=\left[\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right].\frac{x+7}{x}\)

\(=\frac{x^2-1}{x^2-1}.\frac{x+7}{x}\)

\(=\frac{x+7}{x}\)

b. Để A \(\in\)Z thì \(\frac{x+7}{x}\in Z\)

=> x+7 chia hết cho x

Mà x chia hết cho x

=> 7 chia hết cho x

=> x \(\in\)Ư(7)={-7; -1; 1; 7}

Vậy x \(\in\){-7; -1; 1; 7} thì A \(\in\)Z.

 

2 tháng 1 2016

Hoàng Bảo Ngọc trình bày cách làm cho tau với

12 tháng 10 2016

\(\frac{a}{7}-\frac{1}{b+1}=\frac{1}{2}\\ \Rightarrow\frac{a\left(b+1\right)}{7\left(b+1\right)}-\frac{7}{7\left(b+1\right)}=\frac{1}{2}\\ \Rightarrow\frac{ab+a}{7b+7}-\frac{7}{7b+7}=\frac{1}{2}\\ \Rightarrow\frac{ab+a-7}{7b+7}=\frac{1}{2}\\ \Rightarrow2\left(ab+a-7\right)=7b+7\)

=> 2ab+2a-7=7(b+1)

=> 2a(b+1)-7=7(b+1) 

=> 2a(b+1)-7(b+1)=7

=> (b+1)(2a-7)=7 

Tự xử tiếp nhé 

23 tháng 3 2018

a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)

 <=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)

<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)

c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)

<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

20 tháng 12 2021

cục cức chấm mắm

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

25 tháng 3 2018

1 ) Ta có :

b - a = 1 => b và a là hai số nguyên liên tiếp

MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( -  8 ) và ( - 9 )

Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

25 tháng 3 2018

2 ) \(\frac{1}{2.y}\)\(\frac{x}{3}-\frac{1}{6}\)

\(\frac{1}{2y}\)\(\frac{2x-1}{6}\)

=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z 

=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }

Lập bảng giá trị tương ứng giá trị của x , y :

2x - 1- 6- 3- 2- 11236
x /- 1 /01 /2 /
2y- 1- 2- 3- 66321
y /- 1 /- 33 /1 /
2 tháng 4 2019

1.

a. Gọi p là một ước chung của 12n + 1 và 30n + 2. Ta có:

12n + 1 chia hết cho d và 30n + 2 chia hết cho d

=> 5 ( 12n + 1 ) - 2 ( 30n + 2 ) chia hết cho d

=> 60n + 5 - 60n + 4 chia hết cho d

=> 1 chia hết cho d. Vậy d =1 hoặc d = -1

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản.

2 tháng 4 2019

Ta có :

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy  \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) \(< 1\)

18 tháng 2 2020

\(a,234-\left(x-56\right)=789\)

\(\Leftrightarrow x-56=234-789\)

\(\Leftrightarrow x-56=-555\)

\(\Leftrightarrow x=\left(-555\right)+56=-499\)

Vậy x = -499

b) \(\frac{x+3}{-5}=\frac{x-15}{4}\)

\(\Leftrightarrow4\left(x+3\right)=-5\left(x-15\right)\)

\(\Leftrightarrow4x+12=-5x+75\)

\(\Leftrightarrow4x+12-\left(-5x\right)=75\)

\(\Leftrightarrow4x-\left(-5x\right)+12=75\)

\(\Leftrightarrow4x+5x=63\)

\(\Leftrightarrow9x=63\)

\(\Leftrightarrow x=7\)

Vậy x = 7

c) \(8\left(x-1\right)-7=2\left(x+2\right)+5\)

\(\Leftrightarrow8x-8-7=2x+4+5\)

\(\Leftrightarrow8x-8-7-2x+4=5\)

\(\Leftrightarrow8x-2x-8-7+4=5\)

\(\Leftrightarrow8x-2x=5-4+7+8\)

\(\Leftrightarrow4x=16\)

\(\Leftrightarrow x=4\)

Vậy x = 4

d) Đặt \(D=\frac{2x+3}{x-1}=\frac{2x-2+5}{x-1}=\frac{2\left(x-1\right)+5}{x-1}=2+\frac{5}{x-1}\)

=> \(5⋮x-1\)

=> \(x-1\inƯ\left(5\right)\)

=> \(x-1\in\left\{\pm1;\pm5\right\}\)

=> \(x\in\left\{2;0;6;-4\right\}\)