Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Ta có: \(A-\frac{2}{3}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\)
\(=\frac{3\left(-5\sqrt{x}+2\right)}{3\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17\sqrt{x}-51+51}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17}{3}+\frac{17}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow\frac{17}{\sqrt{x}+3}-\frac{17}{3}\le\frac{17}{3}-\frac{17}{3}=0\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow A-\frac{2}{3}\le0\forall x\) thỏa mãn ĐKXĐ
nên \(A\le\frac{2}{3}\)(đpcm)
c) Ta có: \(C=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a-2\sqrt{ab}+b}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}-\sqrt{b}+2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
Vậy: Giá trị của C không phụ thuộc vào a,b(đpcm)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)

Em thử nhá, ko chắc đâu
1) \(\frac{2}{\sqrt{20}}=\frac{2\sqrt{20}}{20}\) 2) \(\frac{4}{\sqrt{8}}=\frac{4\sqrt{8}}{8}\)
3) \(\frac{2+\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{2}+\sqrt{6}}{2}\) 4) \(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{6-4}=\frac{\sqrt{6}+2}{2}\)
5) \(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-\left(\sqrt{2}+\sqrt{3}\right)\)
6) \(\frac{9a-b}{3\sqrt{a}-\sqrt{b}}=\frac{\left(9a-b\right)\left(3\sqrt{a}+b\right)}{\left(3\sqrt{a}-\sqrt{b}\right)\left(3\sqrt{a}+\sqrt{b}\right)}=\left(3\sqrt{a}+b\right)\)
7) + 8) em chưa nghĩ ra
ong tth :v
\(\frac{2}{\sqrt{20}}=\frac{\sqrt{4}}{\sqrt{4}.\sqrt{5}}=\frac{1}{\sqrt{5}}\)
\(\frac{4}{\sqrt{8}}=\frac{\sqrt{16}}{\sqrt{8}}=\sqrt{2}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\frac{\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\sqrt{1,5}\)
\(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}=\frac{\sqrt{6}+2}{2}\)
\(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{3}+\sqrt{2}}{-1}=-\sqrt{3}-\sqrt{2}\)
7: chưa
8: chưa
9:\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(2+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

Trả lời:
a, \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-3}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) \(\left(đkxđ:x\ge0;x\ne9\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)
\(=\frac{x-3\sqrt{x}}{x-9}+\frac{2x+3\sqrt{x}-9}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)
\(=\frac{x-3\sqrt{x}+2x+3\sqrt{x}-9-2x+\sqrt{x}+3}{x-9}\)
\(=\frac{x+\sqrt{x}-6}{x-9}\)
LEVER
\(\frac{3}{a+b\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)\(\Leftrightarrow\frac{3\left(a-b\sqrt{3}\right)-2\left(a+b\sqrt{3}\right)}{a^2-3b^2}=7-20\sqrt{3}\)
\(\Leftrightarrow\frac{a-5\sqrt{3}b}{a^2-3b^2}=7-20\sqrt{3}\)\(\Leftrightarrow\frac{a-5\sqrt{3}b}{a^2-3b^2}=\frac{7-20\sqrt{3}}{49-48}\Leftrightarrow\frac{a-5\sqrt{3}b}{a^2-3b^2}=\frac{7-20\sqrt{3}}{7^2-3.4^2}\Leftrightarrow\hept{\begin{cases}a=7\\b=4\end{cases}}\)