K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

-> \(\overline{ab}\)là số lập phương đúng.

-> \(\overline{ab}\)​có thể là 27 hoặc 64.

TH1: ab = 27

->272=(33)2=36.

(2+7)3=93=(32)3=36 (chọn)

TH2: ab = 64

->642 có chữ số tận cùng là 6

(6+4)3=103=1000 (loại)

->ab=27

5 tháng 3 2020

ab¯ba¯ab¯ba¯ đều là các snt nên đều không chia hết cho 2
Tức là a và b đều không chia hết cho 2
Suy ra a,b chỉ có thể là 1,3,5,7,9
- Vì là số nguyên tố nên cũng không thể chia hết cho 5. Vậy nên a và b phải khác 5
- a,b cũng không thể là 9. Vì nếu giả sử a=9 thì số (a+1)b¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(a+1)b¯ sẽ là số có 3 chữ số
Vậy nên a,b chỉ có thể là 1,3,7
Suy ra ab¯∈11,13,17,31,33,37,71,73,77ab¯∈11,13,17,31,33,37,71,73,77
Thử lại ta được các số 13,31,37,73 thỏa mãn

5 tháng 3 2020

cho mk hỏi 1 câu, bn bt cách kb trên bingbe ko

22 tháng 5 2018

\(a,b\)là các số tự nhiên nên\(\sqrt{\overline{ab}}\)phải là số tự nhiên. Do đó \(\overline{ab}\)là số chính phương.

Suy ra \(\overline{ab}\in\left\{16;25;36;49;64;81\right\}\)

Ta thấy \(\overline{ab}=81\)thỏa mãn \(\sqrt{\overline{ab}}=a+b\)nên \(\overline{ab}=81\)

Vậy số đó là 81

22 tháng 5 2018

Hiển nhiên a;b dương. 

Áp dụng bđt AM-GM: \(a+b\ge2\sqrt{ab}\ge ab\)

\(\Rightarrow a+b=\sqrt{ab}\)khi và chỉ khi: \(\hept{\begin{cases}a=b\\\orbr{\begin{cases}a=0\\b=0\end{cases}}\end{cases}}\Leftrightarrow a=b=0\)

Suy ra ko tìm được \(\overline{ab}\)thỏa mãn điều kiện

27 tháng 7 2015

2x +1 là số lẻ nên (2x+1)là số chính phương lẻ 

120 < (2x+1)2 < 200 => (2x+1)= 121 ; 169

+) (2x+1)= 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6

+) (2x+1)= 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7

Vậy....

1 tháng 1 2016

nswfhceqohvewoi