Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)
Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$
$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$
TH1: Nếu $a\vdots 3, b\not\vdots 3$
$\Rightarrow b^2$ chia $3$ dư $1$
$\Rightarrow b^2+3\vdots 3$
$\Rightarrow a(b^2+3)\vdots 9$
$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$
TH3: Nếu $a\not\vdots 3; b\vdots 3$
$\Rightarrow a^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3$
$\Rightarrow b(a^2+2)\vdots 9$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
TH4: Nếu $a\not\vdots 3; b\not\vdots 3$
$\Rightarrow a^2, b^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
Từ các TH trên ta có đpcm.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
b, a+1 và b+2007 chia hết cho 6
=> a+1 và b+2007 đều chẵn
=> a và b đều lẻ
=> a+b chẵn
Mà a là số nguyên dương nên 4^a chẵn
=> 4^a+a+b chẵn
=> 4^a+a+b chia hết cho 2 (1)
Lại có : a+1 và b+2007 chia hết cho 3
=> a chia 3 dư 2 và b chia hết cho 3
=> a+b chia 3 dư 2
Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1
=> 4^a+a+b chia hết cho 3 (2)
Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
Tk mk nha
Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé
Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)
nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2
Phần còn lại em tự làm nhé
Vì a,b là các số nguyên dương nên:
\(4^a\equiv1\left(mod3\right)\)
\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)
Mà \(4^a+2\equiv0\left(mod2\right)\)
\(\Rightarrow4^a+2\equiv0\left(mod6\right)\) vì \(\left(2;3\right)=1\)
Ta có:\(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)
Vậy \(4^a+a+b⋮6\)
lm lại (đầy đủ hơn) haizz
\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^a\equiv1^a\left(\text{mod 3}\right)\Rightarrow4^a\equiv1\left(\text{mod 3}\right)\)
\(4^a+a+b=4^a+a+1+b+2006-2007\)
vì a+1 và a+2007 chia hết cho 6=>a+b+2008 chia hết cho 3=>a+b+2007 chia 3 dư 2=>4^a+a+b chia hết cho 3 và 2007 chia hết cho 3=>4^a+a+b chia hết cho 3
a+1 và b+2007 chia hết cho 6=>a+1 chia hết cho 2=>a lẻ và b lẻ
4^a+a+b chẵn=>4^a+a+b chia hết cho 2=> 4^a+a+b chia hết cho 2.3 hay chia hết cho 6
Vậy: 4^a+a+b chia hết cho 6 (đpcm)
Theo đề bài a+b2⋮a2b−1
\(\Rightarrow\) ∃ k∈ N* : a+b2=k(a2b−1)
\(\Leftrightarrow\) a+k=b(ka2−b)
Đặt m=ka2−b (m\(\in\)Z) thì ta được a+k=mb
Mặt khác do a,k,b \(\in\) N* nên cho ta m\(\in\)N*
Từ đó ta có:
(m−1)(b−1)=mb−m−b+1=a+k−ka2+1=(a+1)(k−ka+1)
Vì m,b ∈ N* nên (m−1)(b−1) ≥ 0
\(\Rightarrow\) (a+1)(k−ka+1) ≥ 0 \(\Rightarrow\) (k−ka+1)≥ 0
\(\Rightarrow\) 1 ≥ k(a−1)
Lúc này vì k,a ∈ N* nên a−1 ≥ 0. Suy ra chỉ có thể xảy ra 2 trường hợp:
Trường hợp 1: k(a−1)=0 ⇒ a−1=0 hay a=1
Thay a=1 vào đẳng thức (m−1)(b−1)=(a+1)(k−ka+1) ta được
(m−1)(b−1)=2 ⇒ b−1=1∨b−1=2 ⇒ b=2∨b=3
Trường hợp 2: k(a−1)=1 ⇒ k=a−1=1 hay k=1∧a=2
Thay k=1 và a=2 vào đẳng thức (m−1)(b−1)=(a+1)(k−ka+1) ta được
(m−1)(b−1)=0 ⇒ m−1=0∨b−1=0 ⇒ m=1∨b=1
Nếu như m=1 thì từ đẳng thức a+k=mb cho ta b=3
Vậy có 4 cặp số nguyên dương (a,b) thỏa yêu cầu bài toán là (1,2);(1,3);(2,1);(2,3)
lớp 9 sao ghi lớp 6 @@ thế thì thui ko làm nữa !