Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt a/b = 7m / 15m ( m thuộc Z )
suy ra ƯCLN (7m;15m) = 6
(15;7) =1 suy ra m = 6
suy ra a/ b = 7.6/15.6 =42/90
b) 36/35 = 4/5
Đặt a/b = 4n / 5n ( n thuộc Z )
BCNN (a;b) = 300 suy ra BCNN(4n ; 5n ) = 300
(4;5) = 1 suy ra 4.5.n = 300 suy ra n=15 suy ra a/b = 4.15/5.15 = 60/75
Ta có: a/b=36/45=4/5 Suy ra a=4k, b=5k
Suy ra BCNN(a;b)=BCNN(4k;5k)=22.5.k=20k
Mà BCNN(a;b)=300
Suy ra 20k=300
Suy ra k=300:20=15 Suy ra a=60,b=75
b) Ta có 21/35=3/5
ta có 3/5 là phân số tối giản bằng phân số a/b suy ra phân số a/b đã chia cho ƯCLN (a;b)=30 để được 1 phân số tối giản là 3/5
Suy ra a=3.30=90, b=5.30=160
c) Ta có BCNN(a;b).ƯCLN (a,b)=ab=3549
Ta có: a/b=15/35=3/7 suy ra a=3k, b=7k
Suy ra a.b=3k.7k=3549
Suy ra 21.k2=3549
Suy ra k2=169 Suy ra k=13
a/b = 36/45 = 4/5
suy ra ƯCLN = a/4.
Mà BCNN = ab/ƯCLN
suy ra 300 = ab/(a/4)
suy ra b = 75
suy ra a = 60
( nếu đúng thi` bn like giùm ha)
Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b.
Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có
\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)
và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)
\(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)
\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)
\(=ab\)
Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)
Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)
\(b=15\) thì \(a=300\), thỏa mãn.
\(b=30\) thì \(a=150\), không thỏa.
\(b=45\) thì \(a=100\), không thỏa.
\(b=60\) thì \(a=75\), thỏa mãn.
Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\) là các cặp số a, b thỏa mãn yêu cầu bài toán.