Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}\)
\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)
2: \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}\)
\(=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)
\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)
\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)
\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)
\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)
\(\lim\limits\dfrac{\sqrt{\dfrac{an^3}{n^3}+\dfrac{n^2}{n^3}+\dfrac{1}{n^3}}-\sqrt{\dfrac{2n^3}{n^3}+\dfrac{n^2}{n^3}}}{\sqrt{\dfrac{4n^3}{n^3}+\dfrac{3n}{n^3}}}=\dfrac{\sqrt{a}-\sqrt{2}}{2}\le\sqrt{2}\)
\(\Rightarrow\sqrt{a}\le2\sqrt{2}+\sqrt{2}\Rightarrow-\left(2\sqrt{2}+\sqrt{2}\right)^2\le a\le\left(2\sqrt{2}+\sqrt{2}\right)^2\)
Dung ko nhi :D?
\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)
\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)
\(\lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=\lim\dfrac{\sqrt{\left(\dfrac{3}{n}-4\right)^2+\dfrac{1}{n}}+a-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+an}\)
\(=\dfrac{4+a}{1+a}=2\Leftrightarrow4+a=2a+2\Rightarrow a=2\)
\(\lim\left(\sqrt{4n^2+5n}-2n\right)=\lim\dfrac{5n}{\sqrt{4n^2+5n}+2n}=\lim\dfrac{5}{\sqrt{4+\dfrac{5}{n}}+2}=\dfrac{5}{\sqrt{4+0}+2}=\dfrac{5}{4}\)
\(\lim\left(\sqrt{2n+1}-\sqrt{n}\right)=\lim\sqrt{n}\left(\sqrt{2+\dfrac{1}{n}}-1\right)=+\infty.\left(\sqrt{2}-1\right)=+\infty\) (do \(\sqrt{2}-1>0\))
a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)
\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)
\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)
b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)
c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)
d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)
\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)
e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)
f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)
g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)
\(a=\lim\dfrac{\sqrt{2n+1}}{\sqrt{n}+1}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{1+\dfrac{1}{\sqrt{n}}}=\sqrt{2}\)
\(\Rightarrow\lim\dfrac{3-4\sqrt{2}n^2}{\left(\sqrt{2}n-2\right)^2}=\lim\dfrac{\dfrac{3}{n^2}-4\sqrt{2}}{\left(\sqrt{2}-\dfrac{2}{n}\right)^2}=\dfrac{-4\sqrt{2}}{2}=-2\sqrt{2}\)
a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả
b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)
c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)
d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)
e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)
f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)
g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)
\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)
\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)
1.
\(\lim\left(\sqrt{4n^2+2n+1}-\left(an-b\right)\right)=\lim\dfrac{4n^2+2n+1-\left(an-b\right)^2}{\sqrt{4n^2+2n+1}+an-b}\)
\(=\lim\dfrac{\left(4-a^2\right)n^2+\left(2+ab\right)n+1-b^2}{\sqrt{4n^2+2n+1}+an-b}\)
\(=\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}\)
- Nếu \(4-a^2\ne0\Rightarrow\) giới hạn đã cho đạt giá trị dương vô cực \(\Rightarrow\) ktm
\(\Rightarrow4-a^2=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\)
- Với \(a=-2\Rightarrow\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}=-\infty\) (ktm)
- Với \(a=2\Rightarrow\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}=\dfrac{2+2b}{4}\)
\(\Rightarrow\dfrac{b+1}{2}=1\Rightarrow b=1\)
Vậy \(a=2;b=1\)
Câu 2 làm tương tự
Anh giúp em ạ!
https://hoc24.vn/cau-hoi/mot-hop-chua-11-vien-bi-duoc-danh-so-tu-1-den-11-chon-6-vien-bi-mot-cach-ngau-nhien-roi-cong-cac-so-tren-6-vien-bi-duoc-rut-ra-voi-nhau-tinh-xac-suat-de-ket-qua-thu-duoc-la-so-le.8753909240960