\(x^4-6x^3+x^2a+bx+1\) là binh phương của một đa thức.

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

\(A=\left(x^2+nx+m\right)^2\Rightarrow x^4+2nx^3+\left(n^2+2m\right)x^2+2mnx+m^2\\ \)

\(\Rightarrow\hept{\begin{cases}m^2=1\\2n=-6\end{cases}\Rightarrow\hept{\begin{cases}m=+-1\\n=-3\end{cases}}}\)

\(\hept{\begin{cases}a=7\\b=6\end{cases}}hoac\hept{\begin{cases}a=11\\b=-6\end{cases}}\)

18 tháng 2 2017

a=6

b=4 

mk chắc chắn 100%

7 tháng 11 2018

giả sử : \(x^4-6x^3+ax^2+bx+1=\left(x^2+cx+d\right)^2\)

\(\Leftrightarrow x^4-6x^3+ax^2+bx+1=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)

\(\Rightarrow\left\{{}\begin{matrix}2c=-6\\a=c^2+2d\\b=2cd\\1=d^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}d=1\\c=-3\\b=-6\\a=11\end{matrix}\right.\\\left\{{}\begin{matrix}d=-1\\c=-3\\b=6\\a=7\end{matrix}\right.\end{matrix}\right.\)

vậy : \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=11\\b=-6\end{matrix}\right.\\\left\{{}\begin{matrix}a=7\\b=6\end{matrix}\right.\end{matrix}\right.\)

Akai HarumaNguyễn Huy TúAce LegonaNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMysterious PersonMashiro Shiina

9 tháng 9 2019

Câu hỏi của Trà My - Toán lớp 8 - Học toán với OnlineMath

10 tháng 2 2019

A là đa thức bậc 4 nên A là bình phương của 1 đa thức bậc 2
Gọi đa thức bậc 2 đó là:\(cx^2+dx+e\)

\(A=\left(cx^2+dx+e\right)^2\)\(=c^2x^4+d^2x^2+e^2+2cdx^3+2cex^2+2dex\)
Đồng nhất hệ số:\(c^2=1;2cd=-6;d^2+ce=a;2de=b;e^2=1\)

Nếu \(c=1\) thì \(d=-3;e=\pm1\) 

   +,Với \(e=1\) thì \(a=10;b=-6\)

   +,Với \(e=-1\) thì \(a=8;b=6\)

Nếu \(c=-1\) tương tự

18 tháng 8 2020

Bn viet bây à

18 tháng 8 2020

Giúp mik đi

10 tháng 12 2018

\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)

\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)

6 tháng 3 2020

a) Ta có \(P\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+a\)

\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+a\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+a\)

Đặt \(b=x^2+8x+9\) khi đó P(x) có dạng:

\(\left(b-2\right)\left(b+6\right)+a=b^2+4b+a-12=b\left(b+4\right)+a-12\)

nên để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow a-12=0\Leftrightarrow a=12\)