Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^2+ab+\dfrac{b^2}{3}=c^2+\dfrac{b^2}{3}+a^2+ac+c^2\)
\(\Rightarrow a^2+ab+\dfrac{b^2}{3}=2c^2+\dfrac{b^2}{3}+a^2+ac\)
\(\Rightarrow ab=2c^2+ac\)
\(\Rightarrow ab+ac=2ac+2c^2\)
\(\Rightarrow a\left(b+c\right)=2c\left(a+c\right)\)
\(\Rightarrow\dfrac{2c}{a}=\dfrac{b+c}{a+c}\left(đpcm\right)\)
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\Rightarrow x+1\in\left\{-1;1\right\}\Rightarrow x\in\left\{-2;0\right\}\)
\(+,x=0;\Rightarrow\frac{x}{x+1}=0\left(tm\right);+,x=-2\Rightarrow\frac{x}{x+1}=\frac{-2}{-1}=2\left(tm\right)\)
Vậy: x E {0;2}
b, \(\frac{a}{2010}=\frac{b}{2012}=\frac{c}{2014}\Rightarrow a=2010k;b=2012k;c=2014k\left(k\in Z\right)\)
\(\frac{\left(a-c\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\)và: \(\left(a-b\right)\left(b-c\right)=\left(-2k\right)\left(-2k\right)=4k^2\)
\(\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)\(\left(ĐPCM\right)\)
c, Ta có:
\(25-y^2=8.x^2\Rightarrow25-y^2⋮8\Rightarrow y^2:8\left(dư1\right)\left(y\le5\right)\Rightarrow y\in\left\{1;3;5\right\}\)
Ta lần lượt thử ta thấy:
\(25-y^2=8.x^2\left(tm\right)\Leftrightarrow y=5\Rightarrow x=0\)
Vậy: y=5;x=0
a: \(A=\left(5xy-2xy+1.3xy\right)+3x-2y-3.5y^2\)
\(=4.3xy+3x-2y-3.5y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=-\dfrac{7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)