K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

\(\Leftrightarrow-4x^2+12x-16+\left(a-12\right)x+b+16⋮x^2-3x+4\)

=>a=12 và b=-16

10 tháng 12 2017

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

10 tháng 12 2016

Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b

10 tháng 12 2016

trình bày ra bố ạ!

26 tháng 5 2017

Đặt phép chia A(x) cho B(x) được thương là \(x^2+3x+2\)và còn dư \(x\left(a-6\right)+b-8\)

\(\rightarrow\)Để A(x) chia hết cho B(x) thì \(x\left(a-6\right)+b-8=0\rightarrow\hept{\begin{cases}a=6\\b=8\end{cases}}\)

27 tháng 5 2019

nói thêm ax+b=0 suy ra a=0 và b=0

c: \(\Leftrightarrow2x^3-6x^2+4x+x^2-3x+2+a-2⋮x^2-3x+2\)

=>a-2=0

=>a=2

d: \(\dfrac{5x^3+4x^2-6x-a}{5x-1}=\dfrac{5x^3-x^2+5x^2-x-5x+1-a-1}{5x-1}\)

\(=x^2+x-1+\dfrac{-a-1}{5x-1}\)

Để dư bằng -3 thì -a-1=-3

=>a+1=3

=>a=2

2 tháng 11 2018

Chia bình thường thôi mà

2 tháng 11 2018

chia hộ cái

7 tháng 11 2019

Đa thức \(\left(x-1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy 1 và -2 là hai nghiệm của đa thức (x-1)(x+2)

Để đa thức \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)chia hết cho (x-1)(x+2) thì  1 và -2 là cũng hai nghiệm của đa thức 

\(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)

Nếu x = -1 thì \(f\left(-1\right)=2-a+3-4+b=0\)

\(\Leftrightarrow a-b=1\)(1)

Nếu x = 2 thì \(f\left(2\right)=32+8a+12+8+b=0\)

\(\Leftrightarrow52+8a+b=0\)

\(\Leftrightarrow8a+b=-52\)(2)

Lấy (1) + (2), ta được: \(9a=-51\Leftrightarrow a=\frac{-17}{3}\)

\(\Rightarrow b=\frac{-17}{3}-1=\frac{-20}{3}\)

Vậy \(a=\frac{-17}{3};b=\frac{-20}{3}\)