Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a)
\(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}=\frac{a+8}{5}\)
Để \(\frac{a+8}{5}\in Z\)thì \(a+8\)phải là bội của 5
Suy ra \(a+8\in\left\{\pm1;\pm5\right\}\)
Suy ra \(a\in\left\{-7;-9;-3;-13\right\}\)
Hết
Câu 2 tương tự nha
Ta có: \(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\) => a \(⋮\) 5 => a \(\in\) B(5)
Vậy để \(\frac{2a+5}{5}-\frac{a}{5}\) nguyên thì a \(\in\) B(5)
\(A=\dfrac{2a+8-5}{5}=\dfrac{2a+3}{5}\)
Để A là số nguyên thì 2a+3=5k
=>2a=5k-3
=>a=(5k-3)/2
a) P = \(\frac{12n-6}{4n+1}=\frac{12n+3}{4n+1}-\frac{9}{4n+3}=3-\frac{9}{4n+3}\) nguyên
<=> 4n + 3 \(\in\) Ư(9) = {-9; -3; -1; 1; 3; 9}
<=> 4n \(\in\) {-12; -6; -4; -2; 0; 6}
Vì n \(\in\) Z nên n \(\in\) {-3; -1; 0}
b) P rút gọn được <=> ƯCLN(12n - 6; 4n + 1) > 1
Mà 12n - 6 chẵn, 4n + 1 lẻ nên không thể có ước chung là số chẵn
Có 150 < n < 160 nên còn lại các trường hợp n \(\in\) {151; 153; 155; 157; 159}
Đến đây thử các trường hợp n, n nào mà khiến 12n - 6 và 4n + 1 có ước chung > 1 và không phải là số chẵn thì sẽ tìm được n
a)để A max thì 9-x min
do đó : 9-x bé hơn hoặc bằng 0. Mặt khác : A=2016\9-x => 9-x khác 0
do đó : 9-x bé hơn hoặc bằng 1. Mà để A max => 9-x min => 9-x=1=> x=8
Và A max=2016
b) B=x2 -5\x2-2 => B= x2-2-3\x2-2 = 1-3\x2-2
vì 1 là số nguyên => Đê B nguyên thì 3\x2-2 nguyên => x2-2 thuộc ước của 3
sau đó bạn chỉ cần tìm ước của 3 là tìm dk x
Bg
Ta có: \(\frac{2a+8}{5}-\frac{a}{5}\inℤ\)(với a \(\inℤ\))
=> \(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}\)
\(=\frac{2a-a+8}{5}\)
\(=\frac{a+8}{5}\)
Vì \(\frac{a+8}{5}\)\(\inℤ\)mà 8 chia 5 dư 3
=> a chia 5 dư 2
=> a = 5k + 2 (với k \(\inℤ\))