K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Vậy a sẽ bằng 1 vì 1^3 + 24 chia hết cho 25 hoặc a bằng 5 vì 5^3+24 chia hết cho 25

21 tháng 2 2019

Bạn Phước ơi, bạn giải cụ thể đc ko. Nhỡ còn TH khác thì sao?!!!

Với lại, đáy là toán 8 bạn nhé.

18 tháng 9 2017

bài 2 phần a

x^3-0,25x = 0

x*(x2 - 0,25)=0

=> TH1: x=0

TH2 : x2 - 0.25=0

(x-0,5)(x+0,5)=0

=> x=0.5

     x=-0.5

Vậy x=0  , x=+ - 5

sai thì thông cảm

28 tháng 8 2016

+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3

=> (4n + 3)2 chia 3 dư 1 (1)

+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)chia 8 dư 1 (2)

Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1

Mà 25 chia 24 dư 1

=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)

24 tháng 7 2017

ê con uyên lợn

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

19 tháng 8 2016

a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8

19 tháng 8 2016

b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4

3 tháng 11 2017

a)\(\left(a^2-1\right)=\left(a+1\right)\left(a-1\right)\)

Xét\(a=3k+1\)\(\Rightarrow a-1⋮3\)\(\Rightarrow a^2-1⋮3\)

Tương tự a=3k+2

Bạn chứng minh tích 2 số nhẵn liên tiếp chia hết cho 8

Mà (3;8)=1

\(\Rightarrow a^2-1⋮24\)

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )