Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
3x3+10x2-5 chia hết cho 3x-1
<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1
<=> 9x2-5 chia hết cho 3x+1
<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1
<=> 3x-5 chia hết cho 3x+1
<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)
Vì 3x+1 chia 3 dư 1
<=> 3x+1 E {1;-2}
<=> 3x E {0;-3} <=> x E {0;-1}
Thực hiện phép chia đa thức 3x3 + 10x2 - 5 cho đa thức 3x + 1 ta được số dư là -32
Để phép chia trên là phép chia hết thì -32 ⋮ 3x + 1
=> 3x + 1 thuộc Ư(-32) = { 1; 2; 4; 8; 16; 32; -1; -2; -4; -8; -16; -32 }
=> x thuộc { 0; -1; 1; -3; 5; -11 } ( mình đã loại các trường hợp x không phải là số nguyên )
Vậy x thuộc { 0; -1; 1; -3; 5; -11 }
Bài 2:
a, Sửa đề:
\(x^2-4=x^2+2x-2x-4=x\left(x+2\right)-2\left(x+2\right)\)
\(=\left(x+2\right)\left(x-2\right)\)
b, \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(a=x^2+7x+10\Rightarrow a+2=x^2+7x+12\)
\(\Rightarrow\left(1\right)=a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2-4a+6a-24=a.\left(a-4\right)+6.\left(a-4\right)\)
\(=\left(a-4\right)\left(a+6\right)\)(2)
Vì \(a=x^2+7x+10\) nên
\(\left(2\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)
\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right]\left(x^2+7x+16\right)\)
\(=\left(x+1\right).\left(x+6\right)\left(x^2+7x+16\right)\)
Chúc bạn học tốt!!!
1,
Dùng định lý Bơ du :
\(f\left(-\dfrac{1}{3}\right)=3\left(-\dfrac{1}{3}\right)^3+10\left(-\dfrac{1}{3}\right)^2+3.\left(-\dfrac{1}{3}\right)+a-5=0\)
\(=>a=5\)
Vậy a = 5 thì A chia hết cho B .
b,
M = \(x^2-4x+4y^2+4y+5\)
= \(\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+5-\left(1+4\right)\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+0\)
Vậy GTNN của M = 0
khi x = 2 ; 2y + 1 = 0 => y = 1/2
Bài 1:
=>x^4-x^3+5x^2+x^2-x+5+n-5 chia hết cho x^2-x+5
=>n-5=0
=>n=5
\(f\left(x\right)=2x^3+3x^2-10x+a\)
\(f\left(x\right)\)chia hết cho \(x-2\)nên \(f\left(x\right)=\left(x-2\right).q\left(x\right)\)(\(q\left(x\right)\)là đa thức thương)
suy ra \(f\left(2\right)=0\)
\(\Rightarrow2.2^3+3.2^2-10.2+a=0\)
\(\Leftrightarrow a=-8\)
a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)
Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)
b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)
Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)
x^4 -x^3+6x^2-x+a x^2-x+5 x^2 x^4-x^3+5x^2 x^2 +1 x^2 -x+a -x+5 a-5
\(x^4-x^3+6x^2-x+a=\left(x^2+1\right)\left(x^2-x+5\right)+a-5\)
Để đa thức \(x^4-x^3+6x^2-x+a\) chia hết cho đa thức \(x^2-x+5\)
\(\Rightarrow a-5=0\Leftrightarrow a=5\)
b, Đặt \(2x^3-3x^2+x+a=f\left(x\right)\) và \(x+2=g\left(x\right)\)
Theo dịnh lí Bơ du ta có
Xét \(g\left(x\right)=0\Rightarrow x+2=0\Rightarrow x=-2\)
Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(f\left(-2\right)=0\)
\(f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)
\(\Rightarrow f\left(x\right)=-16-12-2+a=0\)
\(\Rightarrow f\left(x\right)=-30+a=0\)
\(\Rightarrow a=30\)
Vậy \(a=30\) thì \(f\left(x\right)\) chia hết cho \(g\left(x\right)\)
Câu b) Thay x=-2 vào rồi giải theo phương pháp giá trị riêng
x^3 - 2x^2 + 3x + a - 1 x + 1 x^2 - 3x + 6 x^3 + x^2 -3x^2 + 3x -3x^2 - 3x 6x + a - 1 6x + 6 a - 7
Để \(x^3-2x^2+3x+a-1⋮x+1\)<=>
\(a-7=0\Leftrightarrow a=7\)
3x^3 + 10x^2 - 5 + n chia hết cho đa thức 3x + 1
Đặt 3x^3 + 10x^2 - 5 + n là A
Theo định lý bơ du:
3x+1=0=>x=-1/3
Thay vào A
A=a-4
Để A chia hết 3x+1
thì a-4=0=>a=4
Đặt f(x) = 3x3 + 10x2 + a - 5
g(x) = 3x + 1
h(x) là thương trong phép chia f(x) cho g(x)
Ta có f(x) chia hết cho g(x) <=> f(x) = g(x).h(x)
<=> 3x3 + 10x2 + a - 5 = ( 3x + 1 ).h(x) (1)
Với x = -1/3
(1) <=> a - 4 = 0 => a = 4
Vậy a = 4 thì f(x) chia hết cho g(x)