\(\dfrac{a^2+a+3}{a+1}\) là số nguyên

2)tìm x

a)|x-1 |+ |x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

\(\dfrac{a^2+a+3}{a+1}\in Z\)

\(\Rightarrow a^2+a+3⋮a+1\)

\(\Rightarrow a^2+a-2a-2+5⋮a+1\)

\(\Rightarrow a\left(a+1\right)-2\left(a-1\right)+5⋮a+1\)

\(\Rightarrow\left(a-2\right)\left(a-1\right)+5⋮a+1\)

\(\Rightarrow5⋮a+1\)

\(\Rightarrow a+1\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}a+1=1\Rightarrow a=0\\a+1=-1\Rightarrow a=2\\a+1=5\Rightarrow a=4\\a+1=-5\Rightarrow a=-6\end{matrix}\right.\)

2)\(\left|x-1\right|+\left|x-4\right|=3x\)

\(\left\{{}\begin{matrix}\left|x-1\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|x-4\right|\ge0\Rightarrow3x\ge0\)

\(\Rightarrow x-1+x-4=3x\)

\(\Rightarrow2x-5=3x\Rightarrow x=-\dfrac{2}{5}\)

tương tự

3)\(A=\left|x+7\right|+\left|x-5\right|+5\)

\(A=\left|x+7\right|+\left|5-x\right|+5\)

Áp dụng bđt:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow A\ge\left|x+7+5-x\right|\)

\(\Rightarrow A\ge17\)

Dấu "=" xảy ra khi;

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+7\ge0\Rightarrow x\ge-7\\5-x\ge0\Rightarrow x\le5\end{matrix}\right.\\\left\{{}\begin{matrix}x+7< 0\Rightarrow x< 7\\5-x< 0\Rightarrow x>5\end{matrix}\right.\end{matrix}\right.\)

Vậy xảy ra khi

\(-7\le x\le5\)

tương tự mấy câu dễ tự làm

10 tháng 8 2017

Ta có

a2+a+3\(⋮a+1\)

a(a+1)+3\(⋮a+1\)

=>3\(⋮a+1\)( vì a(a+1)\(⋮a+1\))

=> a+1\(\in\)Ư(3)=\(\left\{-3;-1;1;3\right\}\)

=>a\(\in\)\(-4;-2;0;2\)

Vậy a\(\in\)\(-4;-2;0;2\)

24 tháng 7 2017

Nhiều quá, từng bài 1 nhé, bài nào làm được, tớ sẽ cố gắng.

bài 2:

a) \(x>2x\Leftrightarrow x-2x>0\Leftrightarrow-x>0\Leftrightarrow x< 0\)

Kl: x<0

b) \(a+x< a\Leftrightarrow x< 0\)

Kl: x<0

c) \(x^3>x^2\Leftrightarrow x^3-x^2>0\Leftrightarrow x^2\left(x-1\right)>0\) (*)

Mà x^2 > 0 \(\Rightarrow\) (*) \(\Leftrightarrow x-1>0\Leftrightarrow x>1\)

Kl: x>1

24 tháng 7 2017

Câu 4:

a) \(1-2x< 7\Leftrightarrow2x>-6\Leftrightarrow x>3\)

Kl: x>3

b) \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

Kl: x>2 hoặc x<1

c) \(\left(x-2\right)^2\left(x+1\right)\left(x+4\right)< 0\Leftrightarrow\left(x+1\right)\left(x+4\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1< x< -4\left(vô-lý\right)\\-4< x< -1\end{matrix}\right.\) \(\Leftrightarrow-4< x< -1\)

Kl: -4<x<-1

d) ĐK: x khác 9\(\dfrac{x^2\left(x+3\right)}{x-9}< 0\Leftrightarrow x^2\left(x+3\right)\left(x-9\right)< 0\Leftrightarrow\left(x+3\right)\left(x-9\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3< x< 9\left(N\right)\\9< x< -3\left(vô-lý\right)\end{matrix}\right.\) \(\Leftrightarrow-3< x< 9\)

Kl: -3<x<9

e) Đk: x khác 0

\(\dfrac{5}{x}< 1\Leftrightarrow\dfrac{5}{x}< \dfrac{5}{5}\Leftrightarrow x>5\left(N\right)\)

KL: x >5

f) ĐK: x khác 1

\(\dfrac{2x-5}{x-1}< 0\Leftrightarrow\left(2x-5\right)\left(x-1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x>1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{2}< x< 1\left(vô-lý\right)\\1< x< \dfrac{5}{2}\left(N\right)\end{matrix}\right.\)

Kl: 1< x< 5/2

3 tháng 10 2017

1. Tìm x:

a) \(\left(x+36\right)^2=1936\Leftrightarrow x+36=\pm44.\) Vậy x = 8 hoặc x = -80

b) \(\left(\dfrac{3}{5}\right)^{x+2}=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}\right)^{x+2}=\left(\dfrac{3}{5}\right)^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)

c) Xem lại đề

d) \(\left(\dfrac{9}{16}\right)^{x-5}=\left(\dfrac{4}{3}\right)^4\Leftrightarrow\left(\dfrac{3}{4}\right)^{2\left(x-5\right)}=\left(\dfrac{3}{4}\right)^{-4}\Leftrightarrow2\left(x-5\right)=-4\Leftrightarrow x=3\)

e) \(\left(\dfrac{3}{5}\right)^x.\left(\dfrac{125}{27}\right)^x=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}.\dfrac{125}{27}\right)^x=\left(\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-4}\Leftrightarrow2x=-4\) Vậy x = -2

3 tháng 10 2017

3. Tính giá trị của biểu thức:

\(A=\left\{-\left[\left(\dfrac{1}{x}\right)^2\right]^3\right\}^5.\left\{-\left[\left(-x\right)^5\right]^2\right\}^3\) \(\left(x\notin0\right)\)

\(=\left\{-\left[-\dfrac{1}{x^2}\right]^3\right\}^5.\left\{-\left[-\left(-x\right)^5\right]^2\right\}^3=\left\{-\left[-\dfrac{1}{x^6}\right]\right\}^5.\left\{-\left[x^5\right]^2\right\}^3\)

\(=\left\{\dfrac{1}{x^6}\right\}^5.\left\{-x^{10}\right\}^3=\dfrac{1}{x^{30}}.\left(-x^{30}\right)=-1\)

5 tháng 8 2017

2) \(\dfrac{x}{y}=\left(\dfrac{x}{y}\right)^2\)

\(\Rightarrow\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}=0\)

\(\Rightarrow\dfrac{x}{y}\left(\dfrac{x}{y}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{y}=0\Rightarrow x=0;y\in R\\\dfrac{x}{y}-1=0\Rightarrow\dfrac{x}{y}=1\Rightarrow x=y\end{matrix}\right.\)

3) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.2^5+2^{15}.1=2^{15}.33⋮33\rightarrowđpcm\)

4)\(\left(x-3\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)

\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-y-4\right)^{200}\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-y-4\right)^{200}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-12+y=0\Rightarrow x+y=12\\x-y-4=0\Rightarrow x-y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)+\left(x-y\right)=12+4\Rightarrow x+y+x-y=16\Rightarrow2x=16\Rightarrow x=8\\y=8-4=4\end{matrix}\right.\)

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j

10 tháng 7 2017

Tìm x dễ thì tự làm nha:

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)

\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)-\left(\dfrac{x+2}{2002}+1\right)-\left(\dfrac{x+1}{2003}\right)=0\)\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)