Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bezout:
2x3 + 3x2 + ax + b chia hết cho (x+1).(x-1)
\(\Leftrightarrow\hept{\begin{cases}2.1^3+3.1^2+a.1+b=0\\2.\left(-1\right)^3-3.\left(-1\right)^2+a.\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=-5\\a-b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-5\\b=0\end{cases}}\)
Áp dụng định lý Bezout:
x3 - 4x2+ ax + b chia hết cho x2 - 3x + 2
hay x3 - 4x2+ ax + b chia hết cho (x-1)(x-2)
\(\Leftrightarrow\hept{\begin{cases}1-4+a+b=0\\8-16+2a+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=3\\2a+b=8\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\)
Áp dụng định lý Bezout :
x3-3x2+5x+2a chia hết cho x-2
\(\Leftrightarrow2^3-3.2^2+5.2+2a=0\)
\(\Leftrightarrow6+2a=0\Leftrightarrow a=-3\)
Vậy a = -3 thì x3-3x2+5x+2a chia hết cho x-2
Áp dụng định lý Bezout :
2x3-x2+ax+b chia hết cho x2-1
\(\Leftrightarrow\orbr{\begin{cases}2.1^3-1^2+a.1+b=0\\2.\left(-1\right)^3-\left(-1\right)^2+a.\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b=-1\\a-b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=1\end{cases}}\)
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
1.a) đặt f(x)= 2x3 - 3x2 + x + a chia hết cho x + 2
nên x=-2 thì f(x)=0
thay x=-2 ta được : -30+a=0
=> a=30 thì 2x3 - 3x2 + x + a chia hết cho x + 2